Concept

Pseudo-aléatoire

Résumé
A pseudorandom sequence of numbers is one that appears to be statistically random, despite having been produced by a completely deterministic and repeatable process. Simply put, the problem is that many of the sources of randomness available to humans (such as rolling dice) rely on physical processes not readily available to computer programs. The generation of random numbers has many uses, such as for random sampling, Monte Carlo methods, board games, or gambling. In physics, however, most processes, such as gravitational acceleration, are deterministic, meaning that they always produce the same outcome from the same starting point. Some notable exceptions are radioactive decay and quantum measurement, which are both modeled as being truly random processes in the underlying physics. Since these processes are not practical sources of random numbers, pseudorandom numbers are used, which ideally have the unpredictability of a truly random sequence, despite being generated by a deterministic process. In many applications, the deterministic process is a computer algorithm called a pseudorandom number generator, which must first be provided with a number called a random seed. Since the same seed will yield the same sequence every time, it is important that the seed be well chosen and kept hidden, especially in security applications, where the pattern's unpredictability is a critical feature. In some cases where it is important for the sequence to be demonstrably unpredictable, physical sources of random numbers have been used, such as radioactive decay, atmospheric electromagnetic noise harvested from a radio tuned between stations, or intermixed timings of keystrokes. The time investment needed to obtain these numbers leads to a compromise: using some of these physics readings as a seed for a pseudorandom number generator. Before modern computing, researchers requiring random numbers would either generate them through various means (dice, cards, roulette wheels, etc.) or use existing random number tables.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.