Un générateur de nombres pseudo-aléatoires, pseudorandom number generator (PRNG) en anglais, est un algorithme qui génère une séquence de nombres présentant certaines propriétés du hasard. Par exemple, les nombres sont supposés être suffisamment indépendants les uns des autres, et il est potentiellement difficile de repérer des groupes de nombres qui suivent une certaine règle (comportements de groupe). Un algorithme déterministe génère des suites de nombres qui ne peuvent pas satisfaire complètement les critères mathématiques qualifiant les suites aléatoires. On les appelle suites pseudo-aléatoires, car leurs propriétés s'approchent seulement des propriétés idéales des suites aléatoires parfaites. Comme le faisait remarquer ironiquement John von Neumann : disait-il . De vrais nombres aléatoires peuvent être produits avec du matériel qui tire parti de certaines propriétés physiques stochastiques (bruit électronique d'une résistance par exemple). Les méthodes pseudo-aléatoires sont souvent employées sur des ordinateurs, dans diverses tâches comme la méthode de Monte-Carlo, la simulation, l'analyse numérique, la programmation (génération de tests), l'aide à la décision, les applications cryptographiques, les algorithmes probabilistes et les jeux. Différentes raisons justifient de se satisfaire d’un rendu pseudo-aléatoire, parmi lesquelles : il est difficile d’obtenir des nombres véritablement aléatoires et, dans certaines situations, l'utilisation de nombre pseudo-aléatoires suffit en lieu et place de nombres réellement aléatoires, c'est le cas des algorithmes de Las Vegas ; les programmes générateurs de nombres aléatoires sont particulièrement adaptés à une implémentation informatique, donc plus facilement et plus efficacement utilisables ; dans certaines circonstances (par exemple en modélisation Monte Carlo), on doit effectuer plusieurs fois des calculs avec la même suite de nombres aléatoires : régénérer cette suite à partir de l'algorithme est plus efficace que de la stocker en mémoire.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (17)
CS-455: Topics in theoretical computer science
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
PHYS-403: Computer simulation of physical systems I
The two main topics covered by this course are classical molecular dynamics and the Monte Carlo method.
Afficher plus
Publications associées (121)
Concepts associés (32)
Cryptographically secure pseudorandom number generator
A cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography. It is also loosely known as a cryptographic random number generator (CRNG). Most cryptographic applications require random numbers, for example: key generation nonces salts in certain signature schemes, including ECDSA, RSASSA-PSS The "quality" of the randomness required for these applications varies.
Cryptographie
thumb|La machine de Lorenz utilisée par les nazis durant la Seconde Guerre mondiale pour chiffrer les communications militaires de haut niveau entre Berlin et les quartiers-généraux des différentes armées. La cryptographie est une des disciplines de la cryptologie s'attachant à protéger des messages (assurant confidentialité, authenticité et intégrité) en s'aidant souvent de secrets ou clés. Elle se distingue de la stéganographie qui fait passer inaperçu un message dans un autre message alors que la cryptographie rend un message supposément inintelligible à autre que qui de droit.
Pseudo-aléatoire
thumb|Représentation graphique d'une suite pseudoaléatoire. Le terme pseudo-aléatoire est utilisé en mathématiques et en informatique pour désigner une suite de nombres qui s'approche d'un aléa statistiquement parfait. Les procédés algorithmiques utilisés pour la créer et les sources employées font que la suite ne peut être complètement considérée comme aléatoire. La majorité des nombres pseudo-aléatoires en informatique sont créés à partir d'algorithmes qui produisent une séquence de nombres présentant certaines propriétés du hasard.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.