Concept

Critical radius

Résumé
Critical radius is the minimum particle size from which an aggregate is thermodynamically stable. In other words, it is the lowest radius formed by atoms or molecules clustering together (in a gas, liquid or solid matrix) before a new phase inclusion (a bubble, a droplet or a solid particle) is viable and begins to grow. Formation of such stable nuclei is called nucleation. At the beginning of the nucleation process, the system finds itself in an initial phase. Afterwards, the formation of aggregates or clusters from the new phase occurs gradually and randomly at the nanoscale. Subsequently, if the process is feasible, the nucleus is formed. Notice that the formation of aggregates is conceivable under specific conditions. When these conditions are not satisfied, a rapid creation-annihilation of aggregates takes place and the nucleation and posterior crystal growth process does not happen. In precipitation models, nucleation is generally a prelude to models of the crystal growth process. Sometimes precipitation is rate-limited by the nucleation process. An example would be when someone takes a cup of superheated water from a microwave and, when jiggling it with a spoon or against the wall of the cup, heterogeneous nucleation occurs and most of water particles convert into steam. If the change in phase forms a crystalline solid in a liquid matrix, the atoms might then form a dendrite. The crystal growth continues in three dimensions, the atoms attaching themselves in certain preferred directions, usually along the axes of a crystal, forming a characteristic tree-like structure of a dendrite. The critical radius of a system can be determined from its Gibbs free energy. It has two components, the volume energy and the surface energy . The first one describes how probable it is to have a phase change and the second one is the amount of energy needed to create an interface. The mathematical expression of , considering spherical particles, is given by: where is the Gibbs free energy per volume and obeys .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.