vignette|Sauts de Barkhausen au cours d'une magnétisation. vignette|Déformation d'une paroi de Bloch au contact d'un défaut cristallin. On appelle effet Barkhausen (ou sauts de Barkhausen, bruit de Barkhausen) la variation discontinue de magnétisation des corps ferromagnétiques sous l’effet d’une fluctuation du champ magnétique. Si l’on place un corps ferromagnétique dans un champ magnétique et que l’on augmente lentement l’excitation, la magnétisation n’augmente pas continûment, mais par sauts progressifs, les « sauts de Barkhausen » : c’est ce qu’a mis en évidence pour la première fois de façon acoustique Heinrich Barkhausen en 1917. Ce comportement est imputable à l’action des moments magnétiques élémentaires créés selon certaines directions de l’espace dans les domaines de Weiss du matériau, zones séparées les unes des autres par les parois de Bloch. Les parois de Bloch commencent par se comprimer, puis se propagent de défaut en défaut. Sous une forte excitation maintenue constante, les moments magnétiques des zones de Weiss pivotent d'un coup. C'est ainsi que le champ magnétique du solide se met à varier de façon discontinue. La courbe de magnétisation est une courbe en escalier. La longueur des paliers mesure la composante réversible de la susceptibilité magnétique, la hauteur des sauts mesure la variation de magnétisation due à la composante irréversible. On peut mettre en évidence l’effet Barkhausen expérimentalement grâce à la détection de variation de flux : il suffit de placer le corps ferromagnétique dans l’entrefer d'une bobine connectée à un circuit électrique, et de provoquer des variations du champ magnétique avec un second électroaimant (ou un aimant) : on détectera des impulsions électriques dans la première bobine. Ces impulsions de courant sont audibles grâce à un haut-parleur connecté à un amplificateur, ou peuvent être visualisées avec un oscilloscope. 300px|vignette|Plate-forme de contrôle non destructif de matériaux ferromagnétiques : vert - banc de magnétisation, rouge - capteur inductif, gris – corps d'épreuve.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
MSE-432: Introduction to magnetic materials in modern technologies
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
EE-100: Electrical engineering science & technology
Ce cours propose une introduction aux sciences et technologies de l'électricité en mettant l'accent sur les composants des circuits électriques. L'enseignement comprend à la fois une partie théorique
PHYS-491: Magnetism in materials
The lectures will provide an introduction to magnetism in materials, covering fundamentals of spin and orbital degrees of freedom, interactions between moments and some typical ordering patterns. Sele
Unités associées (1)
Concepts associés (3)
Hystérésis magnétique
L'hystérésis magnétique désigne le phénomène d'hystérésis observé lors de l'aimantation d'un matériau. Ainsi, lorsqu'un champ magnétique externe est appliqué à un matériau ferromagnétique tel le fer, les dipôles magnétiques atomiques s'alignent en fonction de ce dernier. Lorsque le champ est retiré, une partie de l'alignement demeure au sein du matériau. Ce dernier a été aimanté. La relation entre la force du champ (H) et l'aimantation (M) n'est pas linéaire.
Champ coercitif
En science des matériaux, le champ coercitif d'un matériau ferromagnétique désigne l'intensité du champ magnétique qu'il est nécessaire d'appliquer à un matériau ayant initialement atteint son aimantation à saturation, pour annuler l'aimantation du matériau. Le champ coercitif est usuellement noté ou . Lorsque le champ coercitif d'un ferromagnétique est très élevé, le matériau est qualifié de dur.
Ferromagnétisme
Le ferromagnétisme est le mécanisme fondamental par lequel certains matériaux (fer, cobalt, nickel...) sont attirés par des aimants ou forment des aimants permanents. On distingue en physique différents types de magnétismes. Le ferromagnétisme (qui inclut le ferrimagnétisme) se trouve être celui à l’origine des champs magnétiques les plus importants : c’est celui qui crée des forces suffisamment importantes pour être senties et qui est responsable du phénomène bien connu de magnétisme dans les aimants de la vie quotidienne.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.