Concept

Quadratic algebra

Résumé
In mathematics, a quadratic algebra is a filtered algebra generated by degree one elements, with defining relations of degree 2. It was pointed out by Yuri Manin that such algebras play an important role in the theory of quantum groups. The most important class of graded quadratic algebras is Koszul algebras. Definition A graded quadratic algebra A is determined by a vector space of generators V = A1 and a subspace of homogeneous quadratic relations S ⊂ V ⊗ V . Thus : A=T(V)/\langle S\rangle and inherits its grading from the tensor algebra T(V). If the subspace of relations is instead allowed to also contain inhomogeneous degree 2 elements, i.e. S ⊂ k ⊕ V ⊕ (V ⊗ V), this construction results in a filtered quadratic algebra. A graded quadratic algebra A as above admits a quadratic dual: the quadratic algebra generated by V* and with quadratic relations forming the orthogonal complement of S in V* ⊗ V*. Examples
  • Tensor algebra, symmetric
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Aucun résultat

Concepts associés

Aucun résultat

Cours associés

Chargement

Séances de cours associées

Chargement