obtain algorithmically effective versions of the dense lattice sphere packings constructed from orders in Q-division rings by the first author. The lattices in question are lifts of suitable codes from prime characteristic to orders O in Q-division rings a ...
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...
Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect ...
In this paper we use the Riemann zeta distribution to give a new proof of the Erdos-Kac Central Limit Theorem. That is, if zeta(s) = Sigma(n >= 1) (1)(s)(n) , s > 1, then we consider the random variable X-s with P(X-s = n) = (1) (zeta) ( ...
This thesis concerns the theory of positive-definite completions and its mutually beneficial connections to the statistics of function-valued or continuously-indexed random processes, better known as functional data analysis. In particular, it dwells upon ...
We construct divergence-free Sobolev vector fields in C([0,1];W-1,W-r(T-d;Rd)) with r < d and d\geq 2 which simultaneously admit any finite number of distinct positive solutions to the continuity equation. These vector fields are then shown to have at leas ...
Population equations for infinitely large networks of spiking neurons have a long tradition in theoret-ical neuroscience. In this work, we analyze a recent generalization of these equations to populations of finite size, which takes the form of a nonlinear ...
The finite element method is a well-established method for the numerical solution of partial differential equations (PDEs), both linear and nonlinear. However, the repeated re -assemblage of finite element matrices for nonlinear PDEs is frequently pointed ...
We propose a mathematical and numerical model for the simulation of the heart function that couples cardiac electrophysiology, active and passive mechanics and hemodynamics, and includes reduced models for cardiac valves and the circulatory system. Our mod ...
We study p-adic families of cohomological automorphic forms for GL(2) over imaginary quadratic fields and prove that families interpolating a Zariski-dense set of classical cuspidal automorphic forms only occur under very restrictive conditions. We show ho ...