Concept

10-cage de Balaban

Résumé
La 10-cage de Balaban (ou (3,10)-cage de Balaban) est, en théorie des graphes, un graphe régulier possédant 70 sommets et 105 arêtes. Il porte le nom du mathématicien A. T. Balaban qui en a publié la description en 1972. Propriétés Propriétés générales La 10-cage de Balaban est une (3,10)-cage, c'est-à-dire un graphe minimal en nombres de sommets ayant une maille de 10 et étant régulier de degré 3. Il s'agit de la première cage de ce type à avoir été découverte, mais elle n'est pas unique. La liste complète des (3-10)-cages a été donnée par O'Keefe et Wong en 1980. Il en existe trois distinctes, les deux autres étant le graphe de Harries et le graphe de Harries-Wong. La 10-cage de Balaban est un graphe hamiltonien. Elle possède cycles hamiltoniens distincts. Le diamètre de la 10-cage de Balaban, l'excentricité maximale de ses sommets, ainsi que son rayon, l'excentricité minimale de ses sommets, sont tous deux égaux à 6. Cela entraîne que tous ses sommets app
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement