Concept

Snark fleur

Résumé
En mathématiques, et plus particulièrement en théorie des graphes, les snarks fleurs forment une famille infinie de snarks introduite par Rufus Isaacs en 1975. Étant un snark, un snark fleur est un graphe cubique connexe et sans isthme d'indice chromatique égal à 4. Il est non-planaire et non-hamiltonien. Construction Le snark fleur Jn peut être construit ainsi :
  • Construire n copies du graphe étoile à 4 sommets. On note le sommet central de chaque étoile Ai et les sommets périphériques Bi, Ci et Di. On obtient un graphe non connexe à 4n sommets et 3n arêtes.
  • Construire le cycle à n sommets (B1 B2… Bn) (au centre sur les figures). Cela ajoute n arêtes.
  • Enfin construire le cycle à 2n sommets (C1C2… CnD1D2… Dn) (à l'extérieur sur les figures, les arêtes CnD1 et DnC1 sont en bas). Cela ajoute 2n arêtes.
Par construction, le graphe obtenu Jn est un graphe cubique à 4n sommets et 6n arêtes. Pour être un snark fleur, n doit être impair. Cas particuliers Le nom
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement