We give a characterization of rational points lying on the Noether-Lefschetz locus of moduli spaces of K3 surfaces by studying their lifting properties under some natural coverings of the ambient space. We then prove that the Bombieri-Lang conjecture impli ...
We use birational geometry to show that the existence of rational points on proper rationally connected varieties over fields of characteristic 0 is a consequence of the existence of rational points on terminal Fano varieties. We discuss several consequenc ...
We formulate a conjecture characterizing smooth projective varieties in positive characteristic whose Frobenius morphism can be lifted modulo p(2)-we expect that such varieties, after a finite stale cover, admit a toric fibration over an ordinary abelian v ...
The topic of this thesis is vanishing theorems in positive characteristic. In particular, we use "the covering trick of Ekedahl" to investigate the vanishing of H1(X,OX(−D)) for a big and nef Weil divisor D on a normal projective variety w ...
We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...
We prove that Hausel’s formula for the number of rational points of a Nakajima quiver variety over a finite field also holds in a suitable localization of the Grothendieck ring of varieties. In order to generalize the arithmetic harmonic analysis in his pr ...
A method for achieving a representation of an object within a data structure for a Computer Aided Design system employing a Medial Axis Transformation (MAT), the representation of the object comprising a set of adjacent bounded surface elements called MAT ...
Nowadays, one area of research in cryptanalysis is solving the Discrete Logarithm Problem (DLP) in finite groups whose group representation is not yet exploited. For such groups, the best one can do is using a generic method to attack the DLP, the fastest ...
We state conditions under which the set S(k) of k-rational points on a del Pezzo surface S of degree 1 over an infinite field k of characteristic not equal to 2 or 3 is Zariski dense. For example, it suffices to require that the elliptic fibration S -> P-1 ...