In abstract algebra, a cover is one instance of some mathematical structure mapping onto another instance, such as a group (trivially) covering a subgroup. This should not be confused with the concept of a cover in topology. When some object X is said to cover another object Y, the cover is given by some surjective and structure-preserving map f : X → Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In order to be interesting, the cover is usually endowed with additional properties, which are highly dependent on the context. A classic result in semigroup theory due to D. B. McAlister states that every inverse semigroup has an E-unitary cover; besides being surjective, the homomorphism in this case is also idempotent separating, meaning that in its kernel an idempotent and non-idempotent never belong to the same equivalence class.; something slightly stronger has actually be shown for inverse semigroups: every inverse semigroup admits an F-inverse cover. McAlister's covering theorem generalizes to orthodox semigroups: every orthodox semigroup has a unitary cover. Examples from other areas of algebra include the Frattini cover of a profinite group and the universal cover of a Lie group. If F is some family of modules over some ring R, then an F-cover of a module M is a homomorphism X→M with the following properties: X is in the family F X→M is surjective Any surjective map from a module in the family F to M factors through X Any endomorphism of X commuting with the map to M is an automorphism. In general an F-cover of M need not exist, but if it does exist then it is unique up to (non-unique) isomorphism.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.