Concept

Cover (algebra)

Résumé
In abstract algebra, a cover is one instance of some mathematical structure mapping onto another instance, such as a group (trivially) covering a subgroup. This should not be confused with the concept of a cover in topology. When some object X is said to cover another object Y, the cover is given by some surjective and structure-preserving map f : X → Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In order to be interesting, the cover is usually endowed with additional properties, which are highly dependent on the context. Examples A classic result in semigroup theory due to D. B. McAlister states that every inverse semigroup has an E-unitary cover; besides being surjective, the homomorphism in this case is also idempotent separating, meaning that in its kernel an idempotent and non-idempotent never belong to the same equivalence class.; something slightly stronger h
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Aucun résultat

Unités associées

Aucun résultat

Concepts associés

Aucun résultat

Cours associés

Chargement

Séances de cours associées

Chargement