Concept

Hamiltonian decomposition

Résumé
In graph theory, a branch of mathematics, a Hamiltonian decomposition of a given graph is a partition of the edges of the graph into Hamiltonian cycles. Hamiltonian decompositions have been studied both for undirected graphs and for directed graphs. In the undirected case a Hamiltonian decomposition can also be described as a 2-factorization of the graph such that each factor is connected. For a Hamiltonian decomposition to exist in an undirected graph, the graph must be connected and regular of even degree. A directed graph with such a decomposition must be strongly connected and all vertices must have the same in-degree and out-degree as each other, but this degree does not need to be even. Every complete graph with an odd number of vertices has a Hamiltonian decomposition. This result, which is a special case of the Oberwolfach problem of decomposing complete graphs into isomorphic 2-factors, was attributed to Walecki by Édouard Lucas in 1892. Walecki's construction places of the vertices into a regular polygon, and covers the complete graph in this subset of vertices with Hamiltonian paths that zigzag across the polygon, with each path rotated from each other path by a multiple of . The paths can then all be completed to Hamiltonian cycles by connecting their ends through the remaining vertex. Expanding a vertex of a -regular graph into a clique of vertices, one for each endpoint of an edge at the replaced vertex, cannot change whether the graph has a Hamiltonian decomposition. The reverse of this expansion process, collapsing a clique to a single vertex, will transform any Hamiltonian decomposition in the larger graph into a Hamiltonian decomposition in the original graph. Conversely, Walecki's construction can be applied to the clique to expand any Hamiltonian decomposition of the smaller graph into a Hamiltonian decomposition of the expanded graph. One kind of analogue of a complete graph, in the case of directed graphs, is a tournament.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.