Concept

History of electrophoresis

Résumé
The history of electrophoresis for molecular separation and chemical analysis began with the work of Arne Tiselius in 1931, while new separation processes and chemical analysis techniques based on electrophoresis continue to be developed in the 21st century. Tiselius, with support from the Rockefeller Foundation, developed the "Tiselius apparatus" for moving boundary electrophoresis, which was described in 1937 in the well-known paper "A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures". The method spread slowly until the advent of effective zone electrophoresis methods in the 1940s and 1950s, which used filter paper or gels as supporting media. By the 1960s, increasingly sophisticated gel electrophoresis methods made it possible to separate biological molecules based on minute physical and chemical differences, helping to drive the rise of molecular biology. Gel electrophoresis and related techniques became the basis for a wide range of biochemical methods, such as protein fingerprinting, Southern blot, other blotting procedures, DNA sequencing, and many more. Early work with the basic principle of electrophoresis dates to the early 19th century, based on Faraday's laws of electrolysis proposed in the late 18th century and other early electrochemistry. Experiments by Johann Wilhelm Hittorf, Walther Nernst, and Friedrich Kohlrausch to measure the properties and behavior of small ions moving through aqueous solutions under the influence of an electric field led to general mathematical descriptions of the electrochemistry of aqueous solutions. Kohlrausch created equations for varying concentrations of charged particles moving through solution, including sharp moving boundaries of migrating particles. By the beginning of the 20th century, electrochemists had found that such moving boundaries of charged particles could be created with U-shaped glass tubes. Methods of optical detection of moving boundaries in liquids had been developed by August Toepler in the 1860s; Toepler measured the schlieren (shadows) or slight variations in optical properties that in inhomogeneous solutions.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.