Concept

Levitzky's theorem

Résumé
In mathematics, more specifically ring theory and the theory of nil ideals, Levitzky's theorem, named after Jacob Levitzki, states that in a right Noetherian ring, every nil one-sided ideal is necessarily nilpotent. Levitzky's theorem is one of the many results suggesting the veracity of the Köthe conjecture, and indeed provided a solution to one of Köthe's questions as described in . The result was originally submitted in 1939 as , and a particularly simple proof was given in . Proof This is Utumi's argument as it appears in ;Lemma Assume that R satisfies the ascending chain condition on annihilators of the form {r\in R\mid ar=0} where a is in R. Then

Any nil one-sided ideal is contained in the lower nil radical Nil*(R);

Every nonzero nil right ideal contains a nonzero nilpotent right ideal.

Every nonzero nil left ideal contains a nonzero nilpotent left ideal.

;Levitzki's Theorem Let R be a right Noetherian ring. Then every nil one-sided ideal of R
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement