Concept

Theta function of a lattice

Résumé
In mathematics, the theta function of a lattice is a function whose coefficients give the number of vectors of a given norm. Definition One can associate to any (positive-definite) lattice Λ a theta function given by :\Theta_\Lambda(\tau) = \sum_{x\in\Lambda}e^{i\pi\tau|x|^2}\qquad\mathrm{Im},\tau > 0. The theta function of a lattice is then a holomorphic function on the upper half-plane. Furthermore, the theta function of an even unimodular lattice of rank n is actually a modular form of weight n/2. The theta function of an integral lattice is often written as a power series in q = e^{2i\pi\tau} so that the coefficient of qn gives the number of lattice vectors of norm 2n.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement