Concept

Extender (set theory)

Résumé
In set theory, an extender is a system of ultrafilters which represents an elementary embedding witnessing large cardinal properties. A nonprincipal ultrafilter is the most basic case of an extender. A (κ, λ)-extender can be defined as an elementary embedding of some model M of ZFC− (ZFC minus the power set axiom) having critical point κ ε M, and which maps κ to an ordinal at least equal to λ. It can also be defined as a collection of ultrafilters, one for each n-tuple drawn from λ. Formal definition of an extender Let κ and λ be cardinals with κ≤λ. Then, a set E = {E_a | a\in [\lambda]^{
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement