Module de cisaillementEn résistance des matériaux, le module de cisaillement, module de glissement, module de rigidité, module de Coulomb ou second coefficient de Lamé, est une grandeur physique intrinsèque à chaque matériau et qui intervient dans la caractérisation des déformations causées par des efforts de cisaillement. La définition du module de rigidité , parfois aussi noté μ, estoù (voir l'image ci-contre) est la contrainte de cisaillement, la force, l'aire sur laquelle la force agit, le déplacement latéral relatif et l'écart à l'angle droit, le déplacement latéral et enfin l'épaisseur.
DislocationEn science des matériaux, une dislocation est un défaut linéaire (c'est-à-dire non-ponctuel), correspondant à une discontinuité dans l'organisation de la structure cristalline. Une dislocation peut être vue simplement comme un "quantum" de déformation élémentaire au sein d'un cristal possédant un champ de contrainte à longue distance. Elle est caractérisée par : la direction de sa ligne ; un vecteur appelé « vecteur de Burgers » dont la norme représente l'amplitude de la déformation qu'elle engendre.
Module de YoungLe module de Young, module d’élasticité (longitudinale) ou module de traction est la constante qui relie la contrainte de traction (ou de compression) et le début de la déformation d'un matériau élastique isotrope. Dans les ouvrages scientifiques utilisés dans les écoles d'ingénieurs, il a été longtemps appelé module d'Young. Le physicien britannique Thomas Young (1773-1829) avait remarqué que le rapport entre la contrainte de traction appliquée à un matériau et la déformation qui en résulte (un allongement relatif) est constant, tant que cette déformation reste petite et que la limite d'élasticité du matériau n'est pas atteinte.
Yield (engineering)In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation.
Mécanique des solides déformablesLa est la branche de la mécanique des milieux continus qui étudie le comportement mécanique des matériaux solides, en particulier leurs mouvements et leurs déformations sous l'action de forces, de changements de température, de changements de phase ou d'autres actions externes ou internes. Une application typique de la mécanique des solides déformables consiste à déterminer à partir d'un certaine géométrie solide d'origine et des chargements qui lui sont appliqués, si le corps répond à certaines exigences de résistance et de rigidité.
Infinitesimal strain theoryIn continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimally smaller) than any relevant dimension of the body; so that its geometry and the constitutive properties of the material (such as density and stiffness) at each point of space can be assumed to be unchanged by the deformation.
Joint de grainsUn joint de grains est l'interface entre deux cristaux de même structure cristalline et de même composition, mais d’orientation différente. vignette|Microstructure de VT22 () après trempe. L'échelle est en micromètres. vignette|Schéma d'un joint de grain, dont les atomes communs à deux cristaux (orange et bleu) sont représentés en vert. Les joints de grains peuvent se former dans deux cas de figure : lors de la solidification du matériau et par recristallisation, durant certains traitements thermomécaniques.
OrthotropieL’orthotropie désigne des caractéristiques de symétrie d'un corps, d'une grandeur ou d'un phénomène. Ce terme est utilisé dans plusieurs domaines avec des définitions différentes. L’orthotropie désigne des caractéristiques de symétrie d'un matériau. C’est un cas particulier d’anisotropie. On distingue deux types d'orthotropie : un matériau est orthotrope s'il possède trois plans de symétrie orthogonaux entre eux. Son comportement élastique est alors défini par neuf modules d'élasticité, son comportement thermique par trois constantes thermiques.
Flambagethumb|Flexion sous un effort de compression. Le flambage ou flambement est un phénomène d'instabilité d'une structure élastique qui pour échapper à une charge importante exploite un mode de déformation non sollicité, opposant moins de raideur à la charge. La notion de flambement s'applique généralement à des poutres élancées qui lorsqu'elles sont soumises à un effort normal de compression, ont tendance à fléchir et se déformer dans une direction perpendiculaire à l'axe de compression (passage d'un état de compression à un état de flexion) ; mais elle peut aussi s'appliquer par exemple à des lames de ressort sollicitées en flexion qui se déversent en torsion pour échapper à la charge.
Mécanique de la ruptureLa catastrophe du Vol 587 American Airlines s'explique par la rupture de la dérive de l'appareil.|vignette La mécanique de la rupture tend à définir une propriété du matériau qui peut se traduire par sa résistance à la rupture fragile (fracture) ou ductile. Car si les structures sont calculées pour que les contraintes nominales ne dépassent pas, en règle générale, la limite d'élasticité du matériau et soient donc par voie de conséquence à l'abri de la ruine par rupture de type ductile ; elles ne sont pas systématiquement à l'abri d'une ruine causée par la présence d'une fissure préexistante à la mise en service ou créée en service par fatigue (comme lors de la catastrophe ferroviaire de Meudon) ou par corrosion sous contrainte.