Implication réciproqueEn mathématiques, plus précisément en calcul propositionnel, une implication réciproque est une proposition interchangeant la prémisse et la conclusion d'une implication. La réciproque de la réciproque est alors l'implication initiale. Lorsque l'implication comporte plusieurs prémisses, l'échange de la conclusion avec seulement une partie des prémisses est parfois aussi appelée réciproque, comme pour le théorème de Thalès où les conditions d'alignement restent en prémisse pour la réciproque.
Non sequiturNon sequitur signifie, en latin, « qui ne suit pas les prémisses ». En logique formelle, un argument est un non sequitur si la conclusion ne suit pas les prémisses. Le terme de non sequitur a une application spéciale en droit, sous une définition juridique formelle. Affirmation du conséquent Le non sequitur peut désigner un sophisme. Bien que la conclusion puisse être soit vraie soit fausse, le raisonnement est fallacieux car il ne suit pas les prémisses. Tous les sophismes sont en fait des sortes différentes de non sequitur.
Induction (logique)L'induction est historiquement le nom utilisé pour signifier un genre de raisonnement qui se propose de chercher des lois générales à partir de l'observation de faits particuliers, sur une base probabiliste. Remarque : Bien qu'associée dans le titre de cet article à la logique, la présentation qui suit correspond surtout à la notion bayésienne, utilisée consciemment ou non, de l'induction.
Négation logiqueEn logique et en mathématiques, la négation est un opérateur logique unaire. Il sert à nier une proposition. On note la négation d'une proposition P de diverses manières dont : ¬P (utilisée dans cet article); Non P ; Ces formulations se lisent « négation de P » ou plus simplement « non P ». Dans l'interprétation par des tables de vérité, la proposition ¬P est vraie quand P est fausse et elle est fausse quand P est vraie. La table de vérité s'écrit simplement : ou On remarque alors que où dénote une contradiction.
Raisonnement déductifEn logique, la déduction est une inférence menant d'une affirmation générale à une conclusion particulière. La déduction est une opération par laquelle on établit au moyen de prémisses une conclusion qui en est la conséquence nécessaire, en vertu de règles d'inférence logiques. Ces règles sont notamment l'objet des Premiers Analytiques d'Aristote. On l'oppose généralement à l'induction, qui consiste au contraire à extraire d'un nombre fini de propositions données par l'observation, une conclusion ou un petit nombre de conclusions plus générales.