Generalized symmetric groupIn mathematics, the generalized symmetric group is the wreath product of the cyclic group of order m and the symmetric group of order n. For the generalized symmetric group is exactly the ordinary symmetric group: For one can consider the cyclic group of order 2 as positives and negatives () and identify the generalized symmetric group with the signed symmetric group. There is a natural representation of elements of as generalized permutation matrices, where the nonzero entries are m-th roots of unity: The representation theory has been studied since ; see references in .
Coxeter notationIn geometry, Coxeter notation (also Coxeter symbol) is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson. For Coxeter groups, defined by pure reflections, there is a direct correspondence between the bracket notation and Coxeter-Dynkin diagram.
5-cubethumb|Graphe d'un 5-cube. En cinq dimensions géométriques, un 5-cube est un nom pour un hypercube de cinq dimensions avec 32 sommets, 80 arêtes, 80 faces carrées, 40 cellules cubiques et 10 4-faces tesseracts. Il est représenté par le symbole de Schläfli {4,3,3,3}, réalisé sous la forme 3 tesseracts {4,3,3} autour de chaque arête cubique {4,3}. Il peut être appelé un penteract, ou encore un , étant un construit à partir de 10 facettes régulières. Il fait partie d'une famille infinie d'hypercubes.
5-orthoplexIn five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces. It has two constructed forms, the first being regular with Schläfli symbol {33,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,31,1} or Coxeter symbol 211. It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 5-hypercube or 5-cube.
Demi-hypercubevignette|Les deux demi-hypercubes du cube de dimension 3 sont des tétraèdres. En géométrie, un demi-hypercube est un polytope de dimension n formé en les sommets d'un hypercube de dimension n, c'est-à-dire en ne conservant qu'un sommet sur deux. Il est également appelé polytope de demi-mesure. À partir d'un hypercube donné, on peut obtenir deux demi-hypercubes distincts, en fonction des sommets que l'on élimine et de ceux que l'on garde (il y a deux choix possibles).
6-cubeIn geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces. It has Schläfli symbol {4,34}, being composed of 3 5-cubes around each 4-face. It can be called a hexeract, a portmanteau of tesseract (the 4-cube) with hex for six (dimensions) in Greek. It can also be called a regular dodeca-6-tope or dodecapeton, being a 6-dimensional polytope constructed from 12 regular facets.
5-demicubeIn five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube (penteract) with alternated vertices removed. It was discovered by Thorold Gosset. Since it was the only semiregular 5-polytope (made of more than one type of regular facets), he called it a 5-ic semi-regular. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM5 for a 5-dimensional half measure polytope.
Hyperoctaèdrethumb|Diagramme de Schlegel de l'hexadécachore, hyperoctaèdre en dimension 4. Un hyperoctaèdre est, en géométrie, un polytope régulier convexe, généralisation de l'octaèdre en dimension quelconque. Un hyperoctaèdre de dimension n est également parfois nommé polytope croisé, n-orthoplexe ou cocube. Un hyperoctaèdre est l'enveloppe convexe des points formés par toutes les permutations des coordonnées (±1, 0, 0, ..., 0). En dimension 1, l'hyperoctaèdre est simplement le segment de droite [-1, +1] ; en dimension 2, il s'agit d'un carré de sommets {(1, 0), (-1, 0), (0, 1), (0, -1)}.
Groupe spinorielEn mathématiques, le groupe spinoriel de degré n, noté Spin(n), est un revêtement double particulier du groupe spécial orthogonal réel SO(n,R). C’est-à-dire qu’il existe une suite exacte de groupes de Lie On peut aussi définir les groupes spinoriels d'une forme quadratique non dégénérée sur un corps commutatif. Pour n > 2, Spin(n) est simplement connexe et coïncide avec le revêtement universel de SO(n,R). En tant que groupe de Lie, Spin(n) partage sa dimension n(n–1)/2 et son algèbre de Lie avec le groupe spécial orthogonal.
HexadécachoreL'hexadécachore est, en géométrie, un 4-polytope régulier convexe, c'est-à-dire un polytope à 4 dimensions à la fois régulier et convexe. Il est constitué de 16 cellules tétraédriques. L'hexadécachore est l'hyperoctaèdre de dimension 4. Son dual est le tesseract (ou hypercube). Il pave l'espace euclidien à quatre dimensions.