Résumé
En mathématiques, le groupe spinoriel de degré n, noté Spin(n), est un revêtement double particulier du groupe spécial orthogonal réel SO(n,R). C’est-à-dire qu’il existe une suite exacte de groupes de Lie On peut aussi définir les groupes spinoriels d'une forme quadratique non dégénérée sur un corps commutatif. Pour n > 2, Spin(n) est simplement connexe et coïncide avec le revêtement universel de SO(n,R). En tant que groupe de Lie, Spin(n) partage sa dimension n(n–1)/2 et son algèbre de Lie avec le groupe spécial orthogonal. Spin(n) peut être construit comme un sous-groupe des éléments inversibles de l’algèbre de Clifford Cl(n). Dans cette partie, nous supposons que V est de dimension finie et sa forme bilinéaire non-singulière. (Si K est de caractéristique 2, ceci implique que la dimension de V est paire). Le PinV(K) est le sous-groupe du groupe de Clifford Γ d'éléments de norme de spin 1, et de manière similaire le groupe de Spin SpinV(K) est le sous-groupe d'éléments d'invariant de Dickson 0 dans PinV(K). Lorsque la caractéristique n'est pas 2, ceux-ci sont les éléments de déterminant 1. Le groupe de Spin possède généralement un index 2 dans le groupe de Pin. Rappelons, à partir de la partie précédente, qu'il existe un homomorphisme à partir du groupe de Clifford sur le groupe orthogonal. Nous définissons le groupe spécial orthogonal comme étant l'image de Γ. Si K n'est pas de caractéristique 2, ceci est simplement le groupe d'éléments du groupe orthogonal de déterminant 1. Si K est de caractéristique 2, alors tous les éléments du groupe orthogonal sont de déterminant 1, et le groupe spécial orthogonal est l'ensemble d'éléments d'invariant de Dickson 0. Il existe un homomorphisme à partir du groupe de Pin vers le groupe orthogonal. L'image est constituée des éléments de norme de spin 1 ∈ K*/(K*). Le noyau est constitué des éléments +1 et –1, et est d'ordre 2 à moins que K soit de caractéristique 2. De manière similaire, il existe un homomorphisme à partir du groupe de Spin vers le groupe spécial orthogonal de V.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.