Projective line over a ringIn mathematics, the projective line over a ring is an extension of the concept of projective line over a field. Given a ring A with 1, the projective line P(A) over A consists of points identified by projective coordinates. Let U be the group of units of A; pairs (a, b) and (c, d) from A × A are related when there is a u in U such that ua = c and ub = d. This relation is an equivalence relation. A typical equivalence class is written U[a, b]. P(A) = { U[a, b] : aA + bA = A }, that is, U[a, b] is in the projective line if the ideal generated by a and b is all of A.
Line coordinatesIn geometry, line coordinates are used to specify the position of a line just as point coordinates (or simply coordinates) are used to specify the position of a point. There are several possible ways to specify the position of a line in the plane. A simple way is by the pair (m, b) where the equation of the line is y = mx + b. Here m is the slope and b is the y-intercept. This system specifies coordinates for all lines that are not vertical. However, it is more common and simpler algebraically to use coordinates (l, m) where the equation of the line is lx + my + 1 = 0.
Hyperplane at infinityIn geometry, any hyperplane H of a projective space P may be taken as a hyperplane at infinity. Then the set complement P ∖ H is called an affine space. For instance, if (x1, ..., xn, xn+1) are homogeneous coordinates for n-dimensional projective space, then the equation xn+1 = 0 defines a hyperplane at infinity for the n-dimensional affine space with coordinates (x1, ..., xn). H is also called the ideal hyperplane. Similarly, starting from an affine space A, every class of parallel lines can be associated with a point at infinity.
Real projective lineIn geometry, a real projective line is a projective line over the real numbers. It is an extension of the usual concept of a line that has been historically introduced to solve a problem set by visual perspective: two parallel lines do not intersect but seem to intersect "at infinity". For solving this problem, points at infinity have been introduced, in such a way that in a real projective plane, two distinct projective lines meet in exactly one point.
Plane at infinityIn projective geometry, a plane at infinity is the hyperplane at infinity of a three dimensional projective space or to any plane contained in the hyperplane at infinity of any projective space of higher dimension. This article will be concerned solely with the three-dimensional case. There are two approaches to defining the plane at infinity which depend on whether one starts with a projective 3-space or an affine 3-space. If a projective 3-space is given, the plane at infinity is any distinguished projective plane of the space.