Graphe dualEn théorie des graphes, le graphe dual d'un graphe plongé dans une surface est défini à l'aide des composantes de son complémentaire, lesquelles sont reliées entre elles par les arêtes du graphe de départ. Cette notion généralise celle de dualité dans les polyèdres. Il faut noter qu'un même graphe abstrait peut avoir des graphes duaux non isomorphes en fonction du plongement choisi, même dans le cas de plongements dans le plan. Un graphe (plongé) isomorphe à son dual est dit autodual.
Algorithme du simplexeLalgorithme du simplexe est un algorithme de résolution des problèmes d'optimisation linéaire. Il a été introduit par George Dantzig à partir de 1947. C'est probablement le premier algorithme permettant de minimiser une fonction sur un ensemble défini par des inégalités. De ce fait, il a beaucoup contribué au démarrage de l'optimisation numérique. L'algorithme du simplexe a longtemps été la méthode la plus utilisée pour résoudre les problèmes d'optimisation linéaire.
Géométrie discrèteLa géométrie discrète est une branche de la géométrie. On parle de géométrie discrète pour la distinguer de la géométrie « continue ». Tout comme cette dernière, elle peut être analytique, les objets sont dans ce cas décrits par des inéquations. Un exemple simple : la géométrie continue en deux dimensions permet de définir des droites, des cercles dans un plan. Ces objets sont des ensembles de points qui sont des couples de nombres réels.
MatroïdeEn mathématiques, et plus particulièrement en combinatoire, un matroïde est une structure introduite comme un cadre général pour le concept d'indépendance linéaire. Elle est donc naturellement liée à l'algèbre linéaire (déjà au niveau du vocabulaire : indépendant, base, rang), mais aussi à la théorie des graphes (circuit, cycle), à l'algorithmique (algorithme glouton), et à la géométrie (pour diverses questions liées à la représentation). La notion a été introduite en 1935 par Whitney. Le mot matroïde provient du mot matrice.