À-coupEn mécanique, un à-coup, également saccade ou secousse, est une brusque variation du vecteur accélération sans notion de choc, comme un conducteur donnant un coup d'accélérateur, un coup de frein ou un coup de volant. En physique, le vecteur d'à-coup (en anglais : jerk (pron. /dʒɜːk/, « djk ») aux États-Unis ou jolt en Grande-Bretagne) est la dérivée du vecteur accélération par rapport au temps (soit la dérivée troisième par rapport au temps du vecteur position).
Repère de FrenetEn cinématique ou en géométrie différentielle, le repère de Frenet ou repère de Serret-Frenet est un outil d'étude du comportement local des courbes. Il s'agit d'un repère local associé à un point P, décrivant une courbe (C). Son mode de construction est différent selon que l'espace ambiant est de dimension 2 (courbe plane) ou 3 (courbe gauche) ; il est possible également de définir un repère de Frenet en toute dimension, pourvu que la courbe vérifie des conditions différentielles simples.
Référentiel en rotationUn référentiel en rotation est un cas particulier de référentiel non inertiel qui est en rotation par rapport à un référentiel inertiel. Un exemple courant d'un système de référence en rotation est la surface de la Terre. Ce référentiel permet de mesurer la vitesse et le sens de rotation en mesurant les forces fictives. Par exemple, Léon Foucault a pu démontrer la force de Coriolis résultant de la rotation de la Terre avec le pendule de Foucault. Cette animation montre le système de référence en rotation.
Third derivativeIn calculus, a branch of mathematics, the third derivative or third-order derivative is the rate at which the second derivative, or the rate of change of the rate of change, is changing. The third derivative of a function can be denoted by Other notations can be used, but the above are the most common. Let . Then and . Therefore, the third derivative of f is, in this case, or, using Leibniz notation, Now for a more general definition. Let f be any function of x such that f ′′ is differentiable.