vignette|Traduction de l'ARN messager en protéine par un ribosome.
vignette|Structure générale d'un ARN de transfert. L'anticodon est en rouge.
vignette|Appariement de l'anticodon d'ARNt d'alanine sur son codon d'ARNm.
La biosynthèse des protéines est l'ensemble des processus biochimiques permettant aux cellules de produire leurs protéines à partir de leurs gènes afin de compenser les pertes en protéines par sécrétion ou par dégradation. Elle recouvre les étapes de transcription de l'ADN en ARN messager, d'aminoacylation des ARN de transfert, de traduction de l'ARN messager en chaînes polypeptidiques, de modifications post-traductionnelles de ces dernières, et enfin de repliement des protéines ainsi produites. Elle est étroitement régulée à de multiples niveaux, principalement lors de la transcription et lors de la traduction.
Le matériel génétique des cellules est constitué d'ADN sur lequel l'information génétique est organisée en gènes, ou cistrons, et encodée sous forme de codons consécutifs de trois nucléotides. Chaque codon correspond à un acide aminé précis : la correspondance entre codons et acides aminés constitue le code génétique. La biosynthèse des protéines consiste à synthétiser une chaîne polypeptidique dont la séquence peptidique est déterminée par la séquence nucléotidique — et donc la succession des codons — du gène correspondant. Pour ce faire, l'ADN est tout d'abord transcrit en ARN messager par une ARN polymérase. Chez les eucaryotes, cet ARN messager subit une série de modifications post-transcriptionnelles — ajout d'une coiffe, polyadénylation, épissage — puis gagne le cytoplasme à travers les pores nucléaires. Parallèlement, dans le cytoplasme, les acides aminés sont activés chacun sur leur ARN de transfert par leur aminoacyl-ARNt synthétase spécifique : il existe un type d'ARN de transfert et une aminoacyl-ARNt synthétase spécifique pour chacun des acides aminés protéinogènes.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Un gène, du grec ancien (« génération, naissance, origine »), est, en biologie, une séquence discrète et héritable de nucléotides dont l'expression affecte les caractères d'un organisme. L'ensemble des gènes et du matériel non codant d'un organisme constitue son génome. Un gène possède donc une position donnée dans le génome d'une espèce, on parle de locus génique. La séquence est généralement formée par des désoxyribonucléotides, et est donc une séquence d'ADN (par des ribonucléotides formant de l'ARN dans le cas de certains virus), au sein d'un chromosome.
L'expression des gènes, encore appelée expression génique ou expression génétique, désigne l'ensemble des processus biochimiques par lesquels l'information héréditaire stockée dans un gène est lue pour aboutir à la fabrication de molécules qui auront un rôle actif dans le fonctionnement cellulaire, comme les protéines ou les ARN. Même si toutes les cellules d'un organisme partagent le même génome, certains gènes ne sont exprimés que dans certaines cellules, à certaines périodes de la vie de l'organisme ou sous certaines conditions.
vignette|Structure des protéines, en particulier la structure primaire En biochimie, la structure primaire d'une biomolécule non-ramifiée comme une protéine ou un brin d'ADN ou d'ARN, est la séquence de nucléotides ou d'acides aminés du début à la fin de la molécule. Autrement dit, la structure primaire représente l'exacte composition chimique et la séquence de ses sous-unités monomériques. La structure primaire d'un polymère biologique détermine largement sa forme tridimensionnelle, connue sous le nom de structure tertiaire.
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
Borrowing some quotes from Harper Lee's novel "To Kill A Mockingbird" to help frame our manuscript, we discuss methods to profile local proteomes. We initially focus on chemical biology regimens that function in live organisms and use reactive biotin speci ...
One of the goals of synthetic biology is the development of an artificial cell. Building an artificial cell from scratch will provide a deeper understanding of fundamental mechanisms and models in biology and promises to contribute towards building novel p ...
Under cold stress, the processes of autophagy, apoptosis and energy metabolism are pivotal for sustaining energy and tissue balance. However, the molecular regulatory mechanisms and interactions underlying these processes are still largely unknown. In this ...