Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision while preserving graph topological structures and node attributive features. Previous Graph Neural Networks (GNN) require a large number of labeled ...
The ability to sense airborne pollutants with mobile robots provides a valuable asset for domains such as industrial safety and environmental monitoring. Oftentimes, this involves detecting how certain gases are spread out in the environment, commonly refe ...
Current machine learning models for vision are often highly specialized and limited to a single modality and task. In contrast, recent large language models exhibit a wide range of capabilities, hinting at a possibility for similarly versatile models in co ...
Clustering similar documents is a difficult task for text data mining. Difficulties stem especially from the way documents are translated into numerical vectors. In this chapter, we will present a method that uses Self Organizing Map (SOM) to cluster medic ...
This paper presents a complementary metal–oxide– semiconductor (CMOS) implementation of a conscience mechanism used to improve the effectiveness of learning in the winnertakes- all (WTA) artificial neural networks (ANNs) realized at the transistor level. T ...
Institute of Electrical and Electronics Engineers2010
In this paper we propose a novel recursive algorithm that models the neighborhood mechanism, which is commonly used in self-organizing neural networks (NNs). The neighborhood can be viewed as a map of connections between particular neurons in the NN. Its r ...
The paper presents how the current leakage encountered in capacitive analog memories affects the learning process of hardware implemented Kohonen neural networks (KNN). MOS transistor leakage currents, which strongly depend on temperature, increase the net ...
A new optimized algorithm for the learning process suitable for hardware implemented Winner Takes Most Kohonen Neural Network (KNN) has been proposed in the paper. In networks of this type a neighborhood mechanism is used to improve the convergence propert ...
Insticc-Inst Syst Technologies Information Control & Communication, Avenida D Manuel L, 27A 2 Esquerdo, Setubal, 2910-595, Portugal2009
A new optimized algorithm for the learning process suitable for hardware implemented Winner Takes Most Kohonen Neural Network (KNN) has been proposed in the paper. In networks of this type a neighborhood mechanism is used to improve the convergence propert ...
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for organizing trained and untrained neural networks. In one aspect, a neural network device includes a collection of node assemblies interconnected by betwe ...