Concept

Models of collaborative tagging

Collaborative tagging, also known as social tagging or folksonomy, allows users to apply public tags to online items, typically to make those items easier for themselves or others to find later. It has been argued that these tagging systems can provide navigational cues or "way-finders" for other users to explore information. The notion is that given that social tags are labels users create to represent topics extracted from online documents, the interpretation of these tags should allow other users to predict the contents of different documents efficiently. Social tags are arguably more important in exploratory search, in which the users may engage in iterative cycles of goal refinement and exploration of new information (as opposed to simple fact-retrievals), and interpretation of information contents by others will provide useful cues for people to discover topics that are relevant. One significant challenge that arises in social tagging systems is the rapid increase in the number and diversity of tags. As opposed to structured annotation systems, tags provide users an unstructured, open-ended mechanism to annotate and organize web content. As users are free to create any tag to describe any resource, it leads to what is referred to as the vocabulary problem. Because users may use different words to describe the same document or extract different topics from the same document based on their own background knowledge, the lack of any top-down mediation may lead to an increase in the use of incoherent tags to represent the information resources in the system. In other words, the lack of structure inherent in social tags may hinder their potential as navigational cues for searchers because the diversities of users and their motivation may lead to diminishing tag-topic relations as the system grows. However, a number of studies have shown that structures do emerge at the semantic level – indicating that there are cohesive forces driving the emergent structures in a social tagging system.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (3)
Intelligence collective
L'intelligence collective ou de groupe se manifeste par le fait qu'une équipe d'agents coopérants peut résoudre des problèmes plus efficacement que lorsque ces agents travaillent isolément . Le concept d’intelligence collective a été mobilisé pour aborder des collectifs d'agents très divers : des insectes vivant en colonies, des équipes d'humains, des robots collaboratifs, bien que dans ce dernier cas il conviendrait plutôt de parler d'intelligence distribuée. Pour Pierre Lévy, il s'agit d'une .
Folksonomie
Une folksonomie, ou indexation personnelle, est un système de classification collaborative décentralisée spontanée, basé sur une indexation effectuée par des non-spécialistes. Synonymes : L'expression francisée recommandée par la Commission générale de terminologie et de néologie est indexation personnelle. Certains auteurs utilisent à la place les termes potonomie, peuplonomie, taxinomie populaire ou encore taxinomie sociale. Le mot folksonomie est une adaptation française du mot anglais folksonomy, mot-valise combinant les mots folk (le peuple, les gens) et taxonomy (la taxinomie).
Tag (métadonnée)
Un tag (ou étiquette, marqueur, libellé) est un mot-clé (signifiant) ou terme associé ou assigné à de l'information (par exemple une , un article, ou un clip vidéo), qui décrit une caractéristique de l'objet et permet un regroupement facile des informations contenant les mêmes mots-clés. Les tags sont habituellement choisis de façon personnelle par l'auteur/créateur ou l'utilisateur de l'objet ; ils ne font souvent pas partie d'un schéma de classification prédéfini.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.