Collaborative tagging, also known as social tagging or folksonomy, allows users to apply public tags to online items, typically to make those items easier for themselves or others to find later. It has been argued that these tagging systems can provide navigational cues or "way-finders" for other users to explore information. The notion is that given that social tags are labels users create to represent topics extracted from online documents, the interpretation of these tags should allow other users to predict the contents of different documents efficiently. Social tags are arguably more important in exploratory search, in which the users may engage in iterative cycles of goal refinement and exploration of new information (as opposed to simple fact-retrievals), and interpretation of information contents by others will provide useful cues for people to discover topics that are relevant.
One significant challenge that arises in social tagging systems is the rapid increase in the number and diversity of tags. As opposed to structured annotation systems, tags provide users an unstructured, open-ended mechanism to annotate and organize web content. As users are free to create any tag to describe any resource, it leads to what is referred to as the vocabulary problem. Because users may use different words to describe the same document or extract different topics from the same document based on their own background knowledge, the lack of any top-down mediation may lead to an increase in the use of incoherent tags to represent the information resources in the system. In other words, the lack of structure inherent in social tags may hinder their potential as navigational cues for searchers because the diversities of users and their motivation may lead to diminishing tag-topic relations as the system grows. However, a number of studies have shown that structures do emerge at the semantic level – indicating that there are cohesive forces driving the emergent structures in a social tagging system.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Collective intelligence (CI) is shared or group intelligence (GI) that emerges from the collaboration, collective efforts, and competition of many individuals and appears in consensus decision making. The term appears in sociobiology, political science and in context of mass peer review and crowdsourcing applications. It may involve consensus, social capital and formalisms such as voting systems, social media and other means of quantifying mass activity.
Folksonomy is a classification system in which end users apply public tags to online items, typically to make those items easier for themselves or others to find later. Over time, this can give rise to a classification system based on those tags and how often they are applied or searched for, in contrast to a taxonomic classification designed by the owners of the content and specified when it is published. This practice is also known as collaborative tagging, social classification, social indexing, and social tagging.
In information systems, a tag is a keyword or term assigned to a piece of information (such as an Internet bookmark, multimedia, database record, or ). This kind of metadata helps describe an item and allows it to be found again by browsing or searching. Tags are generally chosen informally and personally by the item's creator or by its viewer, depending on the system, although they may also be chosen from a controlled vocabulary. Tagging was popularized by websites associated with Web 2.
,
Internet of Things (IoT) and Wireless Sensor Networks (WSN) infrastructures are becoming more and more available and diffused. One major outcome is the development of new services that help to make everyday life easier and better. One of those to which thi ...
IEEE2019
,
We present the HIPE-2022 shared task on named entity processing in multilingual historical documents. Following the success of the first CLEF-HIPE-2020 evaluation lab, this edition confronts systems with the challenges of dealing with more languages, learn ...
As the number of scientific papers getting published is likely to soar, most of modern paper management systems (e.g. ScienceWise, Mendeley, CiteULike) support tag-based retrieval. In that, each paper is associated with a set of \emph{tags}, allowing user ...