In linguistics and social sciences, markedness is the state of standing out as nontypical or divergent as opposed to regular or common. In a marked–unmarked relation, one term of an opposition is the broader, dominant one. The dominant default or minimum-effort form is known as unmarked; the other, secondary one is marked. In other words, markedness involves the characterization of a "normal" linguistic unit against one or more of its possible "irregular" forms. In linguistics, markedness can apply to, among others, phonological, grammatical, and semantic oppositions, defining them in terms of marked and unmarked oppositions, such as honest (unmarked) vs. dishonest (marked). Marking may be purely semantic, or may be realized as extra morphology. The term derives from the marking of a grammatical role with a suffix or another element, and has been extended to situations where there is no morphological distinction. In social sciences more broadly, markedness is, among other things, used to distinguish two meanings of the same term, where one is common usage (unmarked sense) and the other is specialized to a certain cultural context (marked sense). In psychology, the social science concept of markedness is quantified as a measure of how much one variable is marked as a predictor or possible cause of another, and is also known as Δp (deltaP) in simple two-choice cases. See confusion matrix for more details. In terms of lexical opposites, a marked form is a non-basic one, often one with inflectional or derivational endings. Thus, a morphologically negative word form is marked as opposed to a positive one: happy/unhappy, honest/dishonest, fair/unfair, clean/unclean, and so forth. Similarly, unaffixed masculine or singular forms are taken to be unmarked in contrast to affixed feminine or plural forms: lion/lioness, host/hostess, automobile/automobiles, child/children. An unmarked form is also a default form. For example, the unmarked lion can refer to a male or female, while lioness is marked because it can refer only to females.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.