Concept

Lévy hierarchy

In set theory and mathematical logic, the Lévy hierarchy, introduced by Azriel Lévy in 1965, is a hierarchy of formulas in the formal language of the Zermelo–Fraenkel set theory, which is typically called just the language of set theory. This is analogous to the arithmetical hierarchy, which provides a similar classification for sentences of the language of arithmetic. In the language of set theory, atomic formulas are of the form x = y or x ∈ y, standing for equality and set membership predicates, respectively. The first level of the Lévy hierarchy is defined as containing only formulas with no unbounded quantifiers and is denoted by . The next levels are given by finding a formula in prenex normal form which is provably equivalent over ZFC, and counting the number of changes of quantifiers:p. 184 A formula is called: if is equivalent to in ZFC, where is if is equivalent to in ZFC, where is If a formula has both a form and a form, it is called . As a formula might have several different equivalent formulas in prenex normal form, it might belong to several different levels of the hierarchy. In this case, the lowest possible level is the level of the formula. Lévy's original notation was (resp. ) due to the provable logical equivalence, strictly speaking the above levels should be referred to as (resp. ) to specify the theory in which the equivalence is carried out, however it is usually clear from context.pp. 441–442 Pohlers has defined in particular semantically, in which a formula is " in a structure ". The Lévy hierarchy is sometimes defined for other theories S. In this case and by themselves refer only to formulas that start with a sequence of quantifiers with at most i−1 alternations, and and refer to formulas equivalent to and formulas in the language of the theory S. So strictly speaking the levels and of the Lévy hierarchy for ZFC defined above should be denoted by and . x = {y, z}p. 14 x ⊆ y x is a transitive set x is an ordinal, x is a limit ordinal, x is a successor ordinal x is a finite ordinal The first countable ordinal ω x is an ordered pair.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.