In physics, quantisation (in American English quantization) is the systematic transition procedure from a classical understanding of physical phenomena to a newer understanding known as quantum mechanics. It is a procedure for constructing quantum mechanics from classical mechanics. A generalization involving infinite degrees of freedom is field quantization, as in the "quantization of the electromagnetic field", referring to photons as field "quanta" (for instance as light quanta). This procedure is basic to theories of atomic physics, chemistry, particle physics, nuclear physics, condensed matter physics, and quantum optics.
In 1901, when Max Planck was developing the distribution function of statistical mechanics to solve ultraviolet catastrophe problem, he realized that the properties of blackbody radiation can be explained by the assumption that the amount of energy must be in countable fundamental units, i.e. amount of energy is not continuous but discrete. That is, a minimum unit of energy exists and the following relationship holds
for the frequency . Here, is called Planck's constant, which represents the amount of the quantum mechanical effect. It means a fundamental change of mathematical model of physical quantities.
In 1905, Albert Einstein published a paper, "On a heuristic viewpoint concerning the emission and transformation of light", which explained the photoelectric effect on quantized electromagnetic waves. The energy quantum referred to in this paper was later called "photon". In July 1913, Niels Bohr used quantization to describe the spectrum of a hydrogen atom in his paper "On the constitution of atoms and molecules".
The preceding theories have been successful, but they are very phenomenological theories. However, the French mathematician Henri Poincaré first gave a systematic and rigorous definition of what quantization is in his 1912 paper "Sur la théorie des quanta".
The term "quantum physics" was first used in Johnston's Planck's Universe in Light of Modern Physics. (1931).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course on one hand develops the quantum theory of electromagnetic radiation from the principles of quantum electrodynamics. It will cover basis historic developments (coherent states, squeezed st
La mécanique quantique est la branche de la physique théorique qui a succédé à la théorie des quanta et à la mécanique ondulatoire pour étudier et décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique. Elle fut développée dans les années 1920 par une dizaine de physiciens européens, pour résoudre des problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.
vignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
En physique, un champ est la donnée, pour chaque point de l'espace-temps, de la valeur d'une grandeur physique. Cette grandeur physique peut être scalaire (température, pression...), vectorielle (vitesse des particules d'un fluide, champ électrique...) ou tensorielle (comme le tenseur de Ricci en relativité générale). Un exemple de champ scalaire est donné par la carte des températures d'un bulletin météorologique télévisé : la température atmosphérique prend, en chaque point, une valeur particulière.
Conformal Field Theories (CFTs) are crucial for our understanding of Quantum Field Theory (QFT). Because of their powerful symmetry properties, they play the role of signposts in the space of QFTs. Any method that gives us information about their structure ...
A logconcave likelihood is as important to proper statistical inference as a convex cost function is important to variational optimization. Quantization is often disregarded when writing likelihood models, ignoring the limitations of the physical detectors ...
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavor in the context of quantum interconnects between distant superconducting qubits, but likewise can have applications in other fields, such as ...