In physics, quantisation (in American English quantization) is the systematic transition procedure from a classical understanding of physical phenomena to a newer understanding known as quantum mechanics. It is a procedure for constructing quantum mechanics from classical mechanics. A generalization involving infinite degrees of freedom is field quantization, as in the "quantization of the electromagnetic field", referring to photons as field "quanta" (for instance as light quanta). This procedure is basic to theories of atomic physics, chemistry, particle physics, nuclear physics, condensed matter physics, and quantum optics.
In 1901, when Max Planck was developing the distribution function of statistical mechanics to solve ultraviolet catastrophe problem, he realized that the properties of blackbody radiation can be explained by the assumption that the amount of energy must be in countable fundamental units, i.e. amount of energy is not continuous but discrete. That is, a minimum unit of energy exists and the following relationship holds
for the frequency . Here, is called Planck's constant, which represents the amount of the quantum mechanical effect. It means a fundamental change of mathematical model of physical quantities.
In 1905, Albert Einstein published a paper, "On a heuristic viewpoint concerning the emission and transformation of light", which explained the photoelectric effect on quantized electromagnetic waves. The energy quantum referred to in this paper was later called "photon". In July 1913, Niels Bohr used quantization to describe the spectrum of a hydrogen atom in his paper "On the constitution of atoms and molecules".
The preceding theories have been successful, but they are very phenomenological theories. However, the French mathematician Henri Poincaré first gave a systematic and rigorous definition of what quantization is in his 1912 paper "Sur la théorie des quanta".
The term "quantum physics" was first used in Johnston's Planck's Universe in Light of Modern Physics. (1931).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (28)
The objective of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
This course on one hand develops the quantum theory of electromagnetic radiation from the principles of quantum electrodynamics. It will cover basis historic developments (coherent states, squeezed st
The objective of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales.
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles.
In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.
A logconcave likelihood is as important to proper statistical inference as a convex cost function is important to variational optimization. Quantization is often disregarded when writing likelihood models, ignoring the limitations of the physical detectors ...
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavor in the context of quantum interconnects between distant superconducting qubits, but likewise can have applications in other fields, such as ...
Conformal Field Theories (CFTs) are crucial for our understanding of Quantum Field Theory (QFT). Because of their powerful symmetry properties, they play the role of signposts in the space of QFTs. Any method that gives us information about their structure ...