Mineralized tissues are biological tissues that incorporate minerals into soft matrices. Typically these tissues form a protective shield or structural support. Bone, mollusc shells, deep sea sponge Euplectella species, radiolarians, diatoms, antler bone, tendon, cartilage, tooth enamel and dentin are some examples of mineralized tissues.
These tissues have been finely tuned to enhance their mechanical capabilities over millions of years of evolution. Thus, mineralized tissues have been the subject of many studies since there is a lot to learn from nature as seen from the growing field of biomimetics. The remarkable structural organization and engineering properties makes these tissues desirable candidates for duplication by artificial means. Mineralized tissues inspire miniaturization, adaptability and multifunctionality. While natural materials are made up of a limited number of components, a larger variety of material chemistries can be used to simulate the same properties in engineering applications. However, the success of biomimetics lies in fully grasping the performance and mechanics of these biological hard tissues before swapping the natural components with artificial materials for engineering design.
Mineralized tissues combine stiffness, low weight, strength and toughness due to the presence of minerals (the inorganic part) in soft protein networks and tissues (the organic part). There are approximately 60 different minerals generated through biological processes, but the most common ones are calcium carbonate found in mollusk shells and hydroxyapatite present in teeth and bones. Although one might think that the mineral content of these tissues can make them fragile, studies have shown that mineralized tissues are 1,000 to 10,000 times tougher than the minerals they contain. The secret to this underlying strength is in the organized layering of the tissue. Due to this layering, loads and stresses are transferred throughout several length-scales, from macro to micro to nano, which results in the dissipation of energy within the arrangement.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
A fish scale is a small rigid plate that grows out of the skin of a fish. The skin of most jawed fishes is covered with these protective scales, which can also provide effective camouflage through the use of reflection and colouration, as well as possible hydrodynamic advantages. The term scale derives from the Old French escale, meaning a shell pod or husk. Scales vary enormously in size, shape, structure, and extent, ranging from strong and rigid armour plates in fishes such as shrimpfishes and boxfishes, to microscopic or absent in fishes such as eels and anglerfishes.
Bone remodeling (or bone metabolism) is a lifelong process where mature bone tissue is removed from the skeleton (a process called bone resorption) and new bone tissue is formed (a process called ossification or new bone formation). These processes also control the reshaping or replacement of bone following injuries like fractures but also micro-damage, which occurs during normal activity. Remodeling responds also to functional demands of the mechanical loading. In the first year of life, almost 100% of the skeleton is replaced.
thumb|upright=1.2|Dents de Piranha. thumb|Dents humaines. La dent est un organe dur et fortement minéralisé implanté dans le palais des raies, la gencive des requins ou les os des mâchoires supérieure et inférieure des autres vertébrés, et dont les fonctions principales sont de saisir, retenir, déchirer et broyer les aliments, mais aussi la défense contre les prédateurs ou les rivaux. Les dents sont souvent caractérisées par le régime alimentaire de l'espèce qui conditionne leur forme, leur nombre, leur implantation ou leur pérennité.
Hydrogels are among the first materials expressly designed for their use in biomedicine. However, state-of-the-art applications of hydrogels are severely limited because they are typically either too soft or too brittle such that they cannot bear significa ...
EPFL2023
, , ,
Curbing and capturing CO2 emissions is no longer enough to cope with the demanding environmental challenges of the coming years. Long-term storage technologies need deployment, to help industrial sectors to reach ambitious emission standards. Mineral carbo ...
2023
Biominerals are used by natural organisms for example as structural supports and optical sensors. They are produced from a limited number of elements and under ambient conditions. Nevertheless, they often possess excellent mechanical properties and sometim ...