Publications associées (66)

RANDOMIZED JOINT DIAGONALIZATION OF SYMMETRIC

Daniel Kressner, Haoze He

Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint diagonalization (RJD) for performing t ...
Philadelphia2024

Spectral Estimators for High-Dimensional Matrix Inference

Farzad Pourkamali

A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
EPFL2024

Duality and bicrystals on infinite binary matrices

Thomas Gerber

The set of finite binary matrices of a given size is known to carry a finite type AA bicrystal structure. We first review this classical construction, explain how it yields a short proof of the equality between Kostka polynomials and one-dimensional sums t ...
2023

Architecture-Controllable Single-Crystal Helical Self-assembly of Small-Molecule Disulfides with Dynamic Chirality

Lukas Pfeifer, Qixing Zhang

Beyond the common supramolecular helical polymers in solutions, controlling single-crystal helical self-assembly with precisely defined chirality and architectures has been challenging. Here, we report that simply merging static homochiral amino acids with ...
AMER CHEMICAL SOC2023

Optimal denoising of rotationally invariant rectangular matrices

Florent Gérard Krzakala, Lenka Zdeborová, Emanuele Troiani, Vittorio Erba

In this manuscript we consider denoising of large rectangular matrices: given a noisy observation of a signal matrix, what is the best way of recovering the signal matrix itself? For Gaussian noise and rotationally-invariant signal priors, we completely ch ...
2022

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.