Résumé
En mécanique quantique, l'intrication quantique, ou enchevêtrement quantique, est un phénomène dans lequel deux particules (ou groupes de particules) forment un système lié, et présentent des états quantiques dépendant l'un de l'autre quelle que soit la distance qui les sépare. Un tel état est dit « intriqué » ou « enchevêtré », parce qu'il existe des corrélations entre les propriétés physiques observées de ces particules distinctes. En effet, le théorème de Bell démontre que l'intrication donne lieu à des actions non locales. Ainsi, deux objets intriqués O1 et O2 ne sont pas indépendants même séparés par une grande distance, et il faut considérer {O1+O2} comme un système unique. Cette observation est au cœur des discussions philosophiques sur l'interprétation de la mécanique quantique. En effet, elle remet en cause le principe de localité défendu par Albert Einstein mais sans le contredire tout à fait car des échanges d'informations à une vitesse supraluminique restent impossibles et la causalité est respectée. L'intrication quantique a des applications potentielles dans les domaines de l'information quantique, tels que la cryptographie quantique, la téléportation quantique ou l'ordinateur quantique. Le caractère surprenant des états intriqués a pour la première fois été souligné par Einstein, Podolsky et Rosen dans un article de 1935 qui tentait de montrer que la mécanique quantique était incomplète. Cette interprétation fut l’objet d’une polémique à vie avec Niels Bohr que l'on nommera le débat "Bohr-Einstein". Dans cet article, les auteurs décrivent une expérience de pensée qui restera connue comme le paradoxe EPR. Mais ce qu'Einstein a nommé « action fantôme à distance » parce qu'il n'y croyait pas, a été largement vérifié et confirmé par les physiciens expérimentateurs. L'expérience d'Alain Aspect a démontré de façon quasi irréfutable, avec seulement l'échappatoire de détection, la violation des inégalités de Bell, établissant un résultat en vue de la validation du phénomène d'intrication quantique et des hypothèses de non-localité.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.