Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Explore la combinaison de données au repos avec des données en mouvement, en mettant l'accent sur les complexités de l'architecture Lambda et l'évaluation de la qualité des flux et des lots.
Explore les produits intelligents et connectés et leur impact transformateur sur les entreprises, couvrant l'intelligence artificielle, l'apprentissage automatique, les modèles prédictifs, les méthodes de prévision et plus encore.
Introduit les bases de la régression linéaire, de l'interprétation des coefficients, des hypothèses, des transformations et de la «différence des différences» pour l'analyse causale.
S'insère dans l'analyse de régression, en mettant l'accent sur le rôle des prédicteurs linéaires dans le rapprochement des résultats et en discutant des modèles linéaires généralisés et des techniques d'inférence causale.
Couvre les marginaux articulaires et la causalité de Granger dans la théorie des probabilités, en expliquant leurs implications dans la prédiction des résultats.
Couvre l'utilisation de transformateurs en robotique, en se concentrant sur la perception incarnée et les applications innovantes dans la locomotion humanoïde et l'apprentissage du renforcement.