Concept

Intraoperative neurophysiological monitoring

Publications associées (215)

Who says you are so sick? An investigation on individual susceptibility to cybersickness triggers using EEG, EGG and ECG

Ronan Boulic, Nana Tian

In this research paper, we conducted a study to investigate the connection between three objective measures: Electrocardiogram(ECG), Electrogastrogram (EGG), and Electroencephalogram (EEG), and individuals' susceptibility to cybersickness. Our primary obje ...
2024

FETCH: A Fast and Efficient Technique for Channel Selection in EEG Wearable Systems

David Atienza Alonso, Amir Aminifar, Alireza Amirshahi, José Angel Miranda Calero, Jonathan Dan

The rapid development of wearable biomedical systems now enables real-time monitoring of electroencephalography (EEG) signals. Acquisition of these signals relies on electrodes. These systems must meet the design challenge of selecting an optimal set of el ...
2024

Resource-Efficient Continual Learning for Personalized Online Seizure Detection

David Atienza Alonso, Giovanni Ansaloni, José Angel Miranda Calero, Jonathan Dan, Amirhossein Shahbazinia, Flavio Ponzina

Epilepsy, a major neurological disease, requires careful diagnosis and treatment. However, the detection of epileptic seizures remains a significant challenge. Current clinical practice relies on expert analysis of EEG signals, a process that is time-consu ...
2024

SzCORE: A Seizure Community Open-source Research Evaluation framework for the validation of EEG-based automated seizure detection algorithms

David Atienza Alonso, Alireza Amirshahi, Jonathan Dan, Adriano Bernini, William Cappelletti, Luca Benini, Una Pale

The need for high-quality automated seizure detection algorithms based on electroencephalography (EEG) becomes ever more pressing with the increasing use of ambulatory and long-term EEG monitoring. Heterogeneity in validation methods of these algorithms in ...
2024

An attention-based deep learning approach for the classification of subjective cognitive decline and mild cognitive impairment using resting-state EEG

Silvestro Micera, Michael Lassi

Objective. This study aims to design and implement the first deep learning (DL) model to classify subjects in the prodromic states of Alzheimer's disease (AD) based on resting-state electroencephalographic (EEG) signals. Approach. EEG recordings of 17 heal ...
IOP Publishing Ltd2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.