Concept

Iron–nickel clusters

Résumé
Iron–nickel (Fe–Ni) clusters are metal clusters consisting of iron and nickel, i.e. Fe–Ni structures displaying polyhedral frameworks held together by two or more metal–metal bonds per metal atom, where the metal atoms are located at the vertices of closed, triangulated polyhedra. Individually, iron (Fe) and nickel (Ni) generally form metal clusters with π-acceptor ligands. Π acceptor ligands are ligands that remove some of the electron density from the metal. Figure 1 contains pictures of representative cluster shapes. Clusters take the form of closed, triangulated polyhedral. Corresponding bulk systems of Fe and Ni atoms show a variety of composition-dependent abnormalities and unusual effects. Fe–Ni composites are studied in hopes to understand and utilize these unusual and new properties. Fe–Ni clusters are used for several main purposes. Fe–Ni clusters ranging from single to hundreds of atoms are used in catalysis, depending on the reaction mechanism. Additionally, Fe–Ni clusters, usually of one or two metal atoms, are used in biological systems. These applications are discussed below. Several general trends are recognized in determining the structure of Fe–Ni clusters. Larger clusters, containing both iron and nickel, are most stable with Fe atoms located in the inner parts of the cluster and Ni metals on outside. In other terms, when iron and nickel form body-centered cubic structures the preferred position of Ni atoms is at the surface, instead of at the center of the cluster, as it is energetically unfavorable for two nickel atoms to occupy nearest-neighbor positions. Metal–metal bonds, being d-orbital interactions, happen at larger distances. More stable metal–metal bonds are expected to be longer than unstable bonds. This is shown by the fact that the Fe–Ni bond length is in between Ni–Ni and Fe–Fe bond lengths. For example, in Fe–Ni four-atom clusters (FeNi)2 which are most stable in a tetrahedral structure, the bond length of metal–metal Fe–Ni bond is 2.65Å and Fe–Fe bond is 2.85 Å.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.