Concept

Computational genomics

Résumé
Computational genomics refers to the use of computational and statistical analysis to decipher biology from genome sequences and related data, including both DNA and RNA sequence as well as other "post-genomic" data (i.e., experimental data obtained with technologies that require the genome sequence, such as genomic DNA microarrays). These, in combination with computational and statistical approaches to understanding the function of the genes and statistical association analysis, this field is also often referred to as Computational and Statistical Genetics/genomics. As such, computational genomics may be regarded as a subset of bioinformatics and computational biology, but with a focus on using whole genomes (rather than individual genes) to understand the principles of how the DNA of a species controls its biology at the molecular level and beyond. With the current abundance of massive biological datasets, computational studies have become one of the most important means to biological discovery. The roots of computational genomics are shared with those of bioinformatics. During the 1960s, Margaret Dayhoff and others at the National Biomedical Research Foundation assembled databases of homologous protein sequences for evolutionary study. Their research developed a phylogenetic tree that determined the evolutionary changes that were required for a particular protein to change into another protein based on the underlying amino acid sequences. This led them to create a scoring matrix that assessed the likelihood of one protein being related to another. Beginning in the 1980s, databases of genome sequences began to be recorded, but this presented new challenges in the form of searching and comparing the databases of gene information. Unlike text-searching algorithms that are used on websites such as Google or Wikipedia, searching for sections of genetic similarity requires one to find strings that are not simply identical, but similar.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.