In quantum mechanics, the Heisenberg uncertainty principle places a fundamental limit in the measurement precision for certain pairs of physical quantities, such as position and momentum, time and energy or amplitude and phase. Due to the Heisenberg uncert ...
One of the most accurate methods for solving the time-dependent Schrödinger equation uses a combination of the dynamic Fourier method with the split-operator algorithm on a tensor-product grid. To reduce the number of required grid points, we let the grid ...
We propose an approximate method for evaluating the importance of non-Born–Oppenheimer effects on the quantum dynamics of nuclei. The method uses a generalization of the dephasing representation (DR) of quantum fidelity to several diabatic potential energy ...
A thorough theoretical description of ultrafast phenomena that occur in complex systems constitutes a formidable challenge. It not only necessitates the use of quantum mechanical methods that can describe ground and possibly even electronically excited sta ...