Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In quantum mechanics, the Heisenberg uncertainty principle places a fundamental limit in the measurement precision for certain pairs of physical quantities, such as position and momentum, time and energy or amplitude and phase. Due to the Heisenberg uncert ...
We derive a somewhat crude, yet very efficient semiclassical approximation for computing nonadiabatic spectra. The resulting method, which is a generalization of the multiple-surface dephasing representation, includes quantum effects through interference o ...
A thorough theoretical description of ultrafast phenomena that occur in complex systems constitutes a formidable challenge. It not only necessitates the use of quantum mechanical methods that can describe ground and possibly even electronically excited sta ...
A method for simultaneously thermostatting an atomistic region and absorbing energetic pulses impinging on the atormstic/continuum interface from the atomistic region is developed to operate within the framework of the coupled atomistic/discrete dislocatio ...
We propose an approximate method for evaluating the importance of non-Born–Oppenheimer effects on the quantum dynamics of nuclei. The method uses a generalization of the dephasing representation (DR) of quantum fidelity to several diabatic potential energy ...
One of the most accurate methods for solving the time-dependent Schrödinger equation uses a combination of the dynamic Fourier method with the split-operator algorithm on a tensor-product grid. To reduce the number of required grid points, we let the grid ...