In particle physics, Rutherford scattering is the elastic scattering of charged particles by the Coulomb interaction. It is a physical phenomenon explained by Ernest Rutherford in 1911 that led to the development of the planetary Rutherford model of the atom and eventually the Bohr model. Rutherford scattering was first referred to as Coulomb scattering because it relies only upon the static electric (Coulomb) potential, and the minimum distance between particles is set entirely by this potential. The classical Rutherford scattering process of alpha particles against gold nuclei is an example of "elastic scattering" because neither the alpha particles nor the gold nuclei are internally excited. The Rutherford formula (see below) further neglects the recoil kinetic energy of the massive target nucleus.
The initial discovery was made by Hans Geiger and Ernest Marsden in 1909 when they performed the gold foil experiment in collaboration with Rutherford, in which they fired a beam of alpha particles (helium nuclei) at foils of gold leaf only a few atoms thick. At the time of the experiment, the atom was thought to be analogous to a plum pudding (as proposed by J. J. Thomson), with the negatively-charged electrons (the plums) studded throughout a positive spherical matrix (the pudding). If the plum-pudding model were correct, the positive "pudding", being more spread out than in the correct model of a concentrated nucleus, would not be able to exert such large coulombic forces, and the alpha particles should only be deflected by small angles as they pass through.
However, the intriguing results showed that around 1 in 20,000 alpha particles were deflected by very large angles (over 90°), while the rest passed through with little deflection. From this, Rutherford concluded that the majority of the mass was concentrated in a minute, positively-charged region (the nucleus) surrounded by electrons. When a (positive) alpha particle approached sufficiently close to the nucleus, it was repelled strongly enough to rebound at high angles.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Solid State Physics IV provides a materials and experimental technique oriented introduction to the electronic and magnetic
properties of strongly correlated electron systems. Established knowledge is
This advanced theoretical course introduces students to basic concepts in wave scattering theory, with a focus on scattering matrix theory and its applications, in particular in photonics.
La diffusion est le phénomène par lequel un rayonnement, comme la lumière, le son ou un faisceau de particules, est dévié dans diverses directions par une interaction avec d'autres objets. La diffusion peut être isotrope, c'est-à-dire répartie uniformément dans toutes les directions, ou anisotrope. En particulier, la fraction de l'onde incidente qui est retournée dans la direction d'où elle provient est appelée rétrodiffusion (backscatter en anglais). La diffusion peut s'effectuer avec ou sans variation de fréquence.
Le modèle atomique de Rutherford est un modèle physique proposé en 1911 par Ernest Rutherford pour décrire la structure d'un atome. Ce modèle fait suite au modèle atomique de Thomson (ou « modèle du plum pudding »), proposé en 1904 par Joseph John Thomson (dont Rutherford était l'élève), et qui fut invalidé à la suite de l'expérience de Rutherford ou « expérience de la feuille d'or » en 1909.
La spectroscopie de rétrodiffusion de Rutherford (Rutherford Backscattering Spectroscopy (RBS), en anglais) est une technique d'analyse radiochimique utilisée en science des matériaux. Cette technique est parfois nommée spectroscopie de diffusion d'ions à haute énergie (cinétique) (High-Energy Ion Scattering (HEIS), en anglais) par opposition aux spectroscopies de diffusion d'ions à faible ou à moyenne énergie. Cette technologie est utilisée pour déterminer la structure et la composition de matériaux par l'analyse de la rétrodiffusion d'un faisceau d'ion à haute énergie frappant un échantillon.
Plonge dans les fondamentaux de la plasmonique, couvrant le modèle Drude, diffusant par de petites particules, des métaux plasmoniques, des nanoparticules résonantes et des observations expérimentales.
Plonge dans les interactions électron-phonon hors équilibre, la conversion d'énergie et les régimes de transport.
Explore la diffusion élastique électron-proton, les facteurs de forme et les implications de la taille finie du proton.