In mathematics, the cylinder sets form a basis of the product topology on a product of sets; they are also a generating family of the cylinder σ-algebra.
Given a collection of sets, consider the Cartesian product of all sets in the collection. The canonical projection corresponding to some is the function that maps every element of the product to its component. A cylinder set is a of a canonical projection or finite intersection of such preimages. Explicitly, it is a set of the form,
for any choice of , finite sequence of sets and subsets for . Here denotes the component of .
Then, when all sets in are topological spaces, the product topology is generated by cylinder sets corresponding to the components' open sets. That is cylinders of the form where for each , is open in . In the same manner, in case of measurable spaces, the cylinder σ-algebra is the one which is generated by cylinder sets corresponding to the components' measurable sets.
The restriction that the cylinder set be the intersection of a finite number of open cylinders is important; allowing infinite intersections generally results in a finer topology. In the latter case, the resulting topology is the box topology; cylinder sets are never Hilbert cubes.
Let be a finite set, containing n objects or letters. The collection of all bi-infinite strings in these letters is denoted by
The natural topology on is the discrete topology. Basic open sets in the discrete topology consist of individual letters; thus, the open cylinders of the product topology on are
The intersections of a finite number of open cylinders are the cylinder sets
Cylinder sets are clopen sets. As elements of the topology, cylinder sets are by definition open sets. The complement of an open set is a closed set, but the complement of a cylinder set is a union of cylinders, and so cylinder sets are also closed, and are thus clopen.
Given a finite or infinite-dimensional vector space over a field K (such as the real or complex numbers), the cylinder sets may be defined as
where is a Borel set in , and each is a linear functional on ; that is, , the algebraic dual space to .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Explore la construction d'objets cylindres dans des complexes de chaîne sur un champ, en mettant l'accent sur les complexes d'homotopie gauche et de chaîne d'intervalle.
Explore les variables aléatoires, les algèbres sigma, l'indépendance et les mesures invariantes de décalage, en mettant l'accent sur les ensembles de cylindres et les algèbres.
In mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. The canonical ensemble gives the probability of the system X being in state x (equivalently, of the random variable X having value x) as Here, E is a function from the space of states to the real numbers; in physics applications, E(x) is interpreted as the energy of the configuration x.
In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.
En mathématiques, une base d'une topologie est un ensemble d'ouverts tel que tout ouvert de la topologie soit une réunion d'éléments de cet ensemble. Ce concept est utile parce que de nombreuses propriétés d'une topologie se ramènent à des énoncés sur une de ses bases et beaucoup de topologies sont faciles à définir par la donnée d'une base. Soit (X, T) un espace topologique. Un réseau de T est un ensemble N de parties de X tel que tout ouvert U de T est une réunion d'éléments de N, autrement dit : pour tout point x de U, il existe dans N une partie incluse dans U et contenant x.
A monotone cylindrical graph is a topological graph drawn on an open cylinder with an infinite vertical axis satisfying the condition that every vertical line intersects every edge at most once. It is called simple if any pair of its edges have at most one ...
Elsevier Science Bv2017
,
We propose a new parametric 3D snake with cylindrical topology. Its construction is based on interpolatory basis functions which facilitates user-interaction because the control points of the snake directly lie on the surface of the deformable cylinder. We ...