Concept

Loi arc sinus

In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root: for 0 ≤ x ≤ 1, and whose probability density function is on (0, 1). The standard arcsine distribution is a special case of the beta distribution with α = β = 1/2. That is, if is an arcsine-distributed random variable, then . By extension, the arcsine distribution is a special case of the Pearson type I distribution. The arcsine distribution appears in the Lévy arcsine law, in the Erdős arcsine law, and as the Jeffreys prior for the probability of success of a Bernoulli trial. The distribution can be expanded to include any bounded support from a ≤ x ≤ b by a simple transformation for a ≤ x ≤ b, and whose probability density function is on (a, b). The generalized standard arcsine distribution on (0,1) with probability density function is also a special case of the beta distribution with parameters . Note that when the general arcsine distribution reduces to the standard distribution listed above. Arcsine distribution is closed under translation and scaling by a positive factor If The square of an arcsine distribution over (-1, 1) has arcsine distribution over (0, 1) If The coordinates of points uniformly selected on a circle of radius centered at the origin (0, 0), have an distribution For example, if we select a point uniformly on the circumference, , we have that the point's x coordinate distribution is , and its y coordinate distribution is The characteristic function of the arcsine distribution is a confluent hypergeometric function and given as . If U and V are i.i.d uniform (−π,π) random variables, then , , , and all have an distribution. If is the generalized arcsine distribution with shape parameter supported on the finite interval [a,b] then If X ~ Cauchy(0, 1) then has a standard arcsine distribution The arcsine distribution has an application to beamforming and pattern synthesis. It is also the classical probability density for the simple harmonic oscillator.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.