En théorie des probabilités et en statistiques, les lois uniformes continues forment une famille de lois de probabilité à densité. Une telle loi est caractérisée par la propriété suivante : tous les intervalles de même longueur inclus dans le support de la loi ont la même probabilité. Cela se traduit par le fait que la densité de probabilité d'une loi uniforme continue est constante sur son support. Elles constituent donc une généralisation de la notion d'équiprobabilité dans le cas continu pour des variables aléatoires à densité ; le cas discret étant couvert par les lois uniformes discrètes. Une loi uniforme est paramétrée par la plus petite valeur et la plus grande valeur que la variable aléatoire correspondante peut prendre. La loi uniforme continue ainsi définie est souvent notée Les densités associées aux lois uniformes continues sont des généralisations de la fonction rectangle en raison de leurs formes. La densité de probabilité de la loi est une fonction porte sur l'intervalle [a, b] : La fonction de répartition de la loi est : La fonction génératrice des moments de la loi est : Elle permet de calculer tous les moments non centrés, m : Ainsi, pour une variable aléatoire suivant la loi l'espérance est m = (a + b)/2, et la variance est m − m = (b − a)/12. Pour n ≥ 2, le n-ième cumulant de la loi uniforme continue sur l'intervalle [0, 1] est b/n, où b est le n-ième nombre de Bernoulli. Soit un échantillon i.i.d. issu de la loi Soit la k-ième statistique d'ordre de l'échantillon. Alors la distribution de est une loi bêta de paramètres k et n − k + 1. L'espérance est : Ce fait est utile lorsqu'on construit une droite de Henry. La variance est : La probabilité qu'une variable uniforme tombe dans un intervalle donné est indépendante de la position de cet intervalle, mais dépend seulement de sa longueur à condition que cet intervalle soit inclus dans le support de la loi. Ainsi, si X suit la loi et si est un sous-intervalle de [a, b], avec fixé, alors : qui est indépendant de x. Ce fait motive la dénomination de cette loi.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
MATH-232: Probability and statistics (for IC)
A basic course in probability and statistics
MATH-413: Statistics for data science
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
FIN-417: Quantitative risk management
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
Afficher plus
Publications associées (361)
Concepts associés (38)
Logarithmically concave function
In convex analysis, a non-negative function f : Rn → R+ is logarithmically concave (or log-concave for short) if its domain is a convex set, and if it satisfies the inequality for all x,y ∈ dom f and 0 < θ < 1. If f is strictly positive, this is equivalent to saying that the logarithm of the function, log ∘ f, is concave; that is, for all x,y ∈ dom f and 0 < θ < 1. Examples of log-concave functions are the 0-1 indicator functions of convex sets (which requires the more flexible definition), and the Gaussian function.
Loi uniforme discrète
En théorie des probabilités, une loi discrète uniforme est une loi de probabilité discrète pour laquelle la probabilité de réalisation est identique (équiprobabilité) pour chaque modalité d’un ensemble fini de modalités possibles. C'est le cas par exemple de la loi de la variable aléatoire donnant le résultat du lancer d'une pièce équilibrée, avec deux modalités équiprobables : Pile, et Face. C'est aussi le cas de celle donnant le résultat du jet d'un dé équilibré.
Efficacité (statistiques)
En statistique, lefficacité est une mesure de la qualité d'un estimateur, d'une expérimentation ou d'un test statistique. Elle permet d'évaluer le nombre d'observations nécessaires pour atteindre un seuil : plus un estimateur est efficace, plus l'échantillon d'observations nécessaire pour atteindre un objectif de précision sera petit. Lefficacité relative de deux procédures est le rapport de leurs efficacités, bien que le concept soit plus utilisé pour le rapport de l'efficacité d'une procédure donnée et d'une procédure théorique optimale.
Afficher plus
MOOCs associés (2)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.