Understanding how things break and slide is of paramount importance to describe the dynamics of a broad range of physical systems. This includes day-to-day problems such as the breaking of a glass of wine or the sliding of skis on snow, but also engineerin ...
We characterize the solution of a broad class of convex optimization problems that address the reconstruction of a function from a finite number of linear measurements. The underlying hypothesis is that the solution is decomposable as a finite sum of compo ...
We consider the problem of finding an optimal transport plan between an absolutely continuous measure and a finitely supported measure of the same total mass when the transport cost is the unsquared Euclidean distance. We may think of this problem as close ...
Let K be an algebraically closed field of characteristic and let W be a finite-dimensional K-vector space of dimension greater than or equal to 5. In this paper, we give the structure of certain Weyl modules for in the case where , as well as the dimension ...
Let R be a semilocal principal ideal domain. Two algebraic objects over R in which scalar extension makes sense (e.g. quadratic spaces) are said to be of the same genus if they become isomorphic after extending scalars to all completions of R and its fract ...
Energy piles are subjected to short- and long-term cyclic thermal loads due to their unique role as heat exchangers. Their response to monotonic temperature change has been investigated by various researchers from both experimental and numerical points of ...
In this note, we use methods from spectral graph theory to obtain bounds on the number of incidences between k-planes and h-planes in F-q(d), which generalizes a recent result given by Bennett, Iosevich, and Pakianathan (2014). More precisely, we prove tha ...
In this thesis we study a number of problems in Discrete Combinatorial Geometry in finite spaces. The contents in this thesis are structured as follows: In Chapter 1 we will state the main results and the notations which will be used throughout the thesis. ...
The extension complexity xc(P) of a polytope P is the minimum number of facets of a polytope that affinely projects to P. Let G be a bipartite graph with n vertices, m edges, and no isolated vertices. Let STAB(G) be the convex hull of the stable sets of G. ...
We present experimental evidence for a quantum phase transition in the easy-axis S=3/2 anisotropic quasi-one-dimensional ferromagnet CoCl2⋅2D2O in a transverse field. Elastic neutron scattering shows that the magnetic order parameter vanishes at a transver ...