Two fundamental properties of embryonic stem cells (ESCs) are their ability to self-renew and differentiate into all somatic cell types. Maintenance of their identity faces major challenges when transitioning through mitosis, as most DNA-binding proteins a ...
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie i ...
Embryonic stem (ES) cells have the capacity to give rise to all cell types of the adult organism and can be used as a model to study early cell fate decisions as they closely recapitulate in vivo events. The M and G1 phases have been suggested to be the ke ...
Biomolecular signaling is of utmost importance in governing many biological processes such as morphogenesis during tissue development where biomolecules regulate key cell-fate decisions. In vivo, these factors are presented in a spatiotemporally tightly co ...
The pioneer activity of transcription factors allows for opening of inaccessible regulatory elements and has been extensively studied in the context of cellular differentiation and reprogramming. In contrast, the function of pioneer activity in self-renewi ...
Neural stem cells (NSCs) in the postnatal mammalian brain self-renew and are a source of neurons and glia. To date, little is known about the molecular and cellular mechanisms regulating the maintenance and differentiation of these multipotent progenitors. ...