Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Linear programming (LP) has played a key role in the study of algorithms for combinatorial optimization problems. In the field of approximation algorithms, this is well illustrated by the uncapacitated facility location problem. A variety of algorithmic me ...
Society for Industrial and Applied Mathematics2017
Clustering is a classic topic in combinatorial optimization and plays a central role in many areas, including data science and machine learning. In this thesis, we first focus on the dynamic facility location problem (i.e., the facility location problem in ...
We give a constant-factor approximation algorithm for the asymmetric traveling salesman problem. Our approximation guarantee is analyzed with respect to the standard LP relaxation, and thus our result confirms the conjectured constant integrality gap of th ...
Approximation algorithms are a commonly used tool for designing efficient algorithmic solutions for intractable problems, at the expense of the quality of the output solution. A prominent technique for designing such algorithms is the use of Linear Program ...
Initially developed for the min-knapsack problem, the knapsack cover inequalities are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield linear ...
The dynamic facility location problem is a generalization of the classic facility location problem proposed by Eisenstat, Mathieu, and Schabanel to model the dynamics of evolving social/infrastructure networks. The generalization lies in that the distance ...
Many of the currently best-known approximation algorithms for NP-hard optimization problems are based on Linear Programming (LP) and Semi-definite Programming (SDP) relaxations. Given its power, this class of algorithms seems to contain the most favourable ...
Randomization is a fundamental tool used in many theoretical and practical areas of computer science. We study here the role of randomization in the area of submodular function maximization. In this area, most algorithms are randomized, and in almost all c ...
Symmetric submodular functions are an important family of submodular functions capturing many interesting cases, including cut functions of graphs and hypergraphs. Maximization of such functions subject to various constraints receives little attention by c ...
The fully connected conditional random field (CRF) with Gaussian pairwise potentials has proven popular and effective for multi-class semantic segmentation. While the energy of a dense CRF can be minimized accurately using a linear programming (LP) relaxat ...