Concept

Lie algebra-valued differential form

In differential geometry, a Lie-algebra-valued form is a differential form with values in a Lie algebra. Such forms have important applications in the theory of connections on a principal bundle as well as in the theory of Cartan connections. A Lie-algebra-valued differential -form on a manifold, , is a smooth section of the bundle , where is a Lie algebra, is the cotangent bundle of and denotes the exterior power. Since every Lie algebra has a bilinear Lie bracket operation, the wedge product of two Lie-algebra-valued forms can be composed with the bracket operation to obtain another Lie-algebra-valued form. For a -valued -form and a -valued -form , their wedge product is given by where the 's are tangent vectors. The notation is meant to indicate both operations involved. For example, if and are Lie-algebra-valued one forms, then one has The operation can also be defined as the bilinear operation on satisfying for all and . Some authors have used the notation instead of . The notation , which resembles a commutator, is justified by the fact that if the Lie algebra is a matrix algebra then is nothing but the graded commutator of and , i. e. if and then where are wedge products formed using the matrix multiplication on . Let be a Lie algebra homomorphism. If is a -valued form on a manifold, then is an -valued form on the same manifold obtained by applying to the values of : . Similarly, if is a multilinear functional on , then one puts where and are -valued -forms. Moreover, given a vector space , the same formula can be used to define the -valued form when is a multilinear map, is a -valued form and is a -valued form. Note that, when giving amounts to giving an action of on ; i.e., determines the representation and, conversely, any representation determines with the condition . For example, if (the bracket of ), then we recover the definition of given above, with , the adjoint representation. (Note the relation between and above is thus like the relation between a bracket and .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.