Résumé
In survey methodology, systematic sampling is a statistical method involving the selection of elements from an ordered sampling frame. The most common form of systematic sampling is an equiprobability method. In this approach, progression through the list is treated circularly, with a return to the top once the list ends. The sampling starts by selecting an element from the list at random and then every kth element in the frame is selected, where k, is the sampling interval (sometimes known as the skip): this is calculated as: where n is the sample size, and N is the population size. Using this procedure each element in the population has a known and equal probability of selection (also known as epsem). This makes systematic sampling functionally similar to simple random sampling (SRS). However, it is not the same as SRS because not every possible sample of a certain size has an equal chance of being chosen (e.g. samples with at least two elements adjacent to each other will never be chosen by systematic sampling). It is, however, much more efficient (if the variance within a systematic sample is more than the variance of the population). Systematic sampling is to be applied only if the given population is logically homogeneous, because systematic sample units are uniformly distributed over the population. The researcher must ensure that the chosen sampling interval does not hide a pattern. Any pattern would threaten randomness. Example: Suppose a supermarket wants to study buying habits of their customers, then using systematic sampling they can choose every 10th or 15th customer entering the supermarket and conduct the study on this sample. This is random sampling with a system. From the sampling frame, a starting point is chosen at random, and choices thereafter are at regular intervals. For example, suppose you want to sample 8 houses from a street of 120 houses. 120/8=15, so every 15th house is chosen after a random starting point between 1 and 15. If the random starting point is 11, then the houses selected are 11, 26, 41, 56, 71, 86, 101, and 116.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.