Anisotropic diffusionIn and computer vision, anisotropic diffusion, also called Perona–Malik diffusion, is a technique aiming at reducing without removing significant parts of the image content, typically edges, lines or other details that are important for the interpretation of the image. Anisotropic diffusion resembles the process that creates a scale space, where an image generates a parameterized family of successively more and more blurred images based on a diffusion process.
Edge-preserving smoothingEdge-preserving smoothing or edge-preserving filtering is an technique that smooths away noise or textures while retaining sharp edges. Examples are the median, bilateral, guided, anisotropic diffusion, and Kuwahara filters. In many applications, e.g., medical or satellite imaging, the edges are key features and thus must be preserved sharp and undistorted in smoothing/denoising. Edge-preserving filters are designed to automatically limit the smoothing at “edges” in images measured, e.g., by high gradient magnitudes.
Filtre médianLe filtre médian est un filtre numérique non linéaire, souvent utilisé pour la réduction de bruit. La réduction de bruit est une étape de prétraitement classique visant à améliorer les résultats de traitements futurs (détection de bords par exemple). La technique de filtre médian est largement utilisée en numériques car il permet sous certaines conditions de réduire le bruit tout en conservant les contours de l'image. L'idée principale du filtre médian est de remplacer chaque entrée par la valeur médiane de son voisinage.
Variation totale d'une fonctionEn mathématiques, la variation totale est liée à la structure (locale ou globale) du codomaine d'une fonction. Pour une fonction continue à valeurs réelles f, définie sur un intervalle [a, b] ⊂ R, sa variation totale sur l'intervalle de définition est une mesure de la longueur d'arc de la projection sur l'axe des ordonnées de la courbe paramétrée (x, f(x)), pour x ∈ [a, b]. L'idée de variation totale pour les fonctions d'une variable réelle a d'abord été introduite par Camille Jordan, afin de démontrer un théorème de convergence pour les séries de Fourier de fonctions discontinues périodiques à variation bornée.