Explore la régularisation dans des modèles linéaires, y compris la régression de crête et le Lasso, les solutions analytiques et la régression de crête polynomiale.
Aborde l'ajustement excessif dans l'apprentissage supervisé par le biais d'études de cas de régression polynomiale et de techniques de sélection de modèles.
Explore les noyaux de régression de processus gaussien, les coûts de calcul et les comparaisons avec la régression de crête et d'autres techniques de régression non linéaire.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, en soulignant l'importance de la complexité du modèle et des différentes méthodes de validation croisée.