Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les moindres carrés pondérés itératifs, la vérification du modèle, la régression de Poisson et lajustement des modèles multinomiels en utilisant les erreurs de Poisson.
Explore les régressions OLS pour les prix des maisons, couvrant les valeurs aberrantes, les observations influentes, les spécifications du modèle et les stratégies de sélection.
Couvre l'essentiel de la régression linéaire, en se concentrant sur l'utilisation de multiples variables explicatives quantitatives pour prédire un résultat quantitatif.
Explore l'apprentissage supervisé en économétrie financière, couvrant la régression linéaire, l'ajustement du modèle, les problèmes potentiels, les fonctions de base, la sélection de sous-ensembles, la validation croisée, la régularisation et les forêts aléatoires.
Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Couvre les méthodes de descente de gradient pour les problèmes convexes et non convexes, y compris la minimisation convexe lisse sans contrainte, lestimation de la vraisemblance maximale, et des exemples comme la régression de crête et la classification dimage.